Enrichment analyses and results contextualisation with Knowledge Graphs

Summer School Multi-omics Data Analysis and Integration

Maxime DELMAS - 07/09/2023

Enrichment analyses

• [Gene sets, pathways, metabolites] <u>enrichment</u> analyses

~ over-representation

Enrichment analyses

• [Gene sets, pathways, metabolites] <u>enrichment</u> analyses

~ over-representation

• Give directions for results interpretation

Enrichment analyses

• [Gene sets, pathways, metabolites] <u>enrichment</u> analyses

~ over-representation

• Give directions for results interpretation

- Families of approaches:
 - Over-Representation Analysis (ORA)
 - Functional Class Scoring (eg. GSEA)
 - Topology-based methods

ORA: Over-Representation Analysis

What does an ORA? it compare **overlap** between **sets**.

- Sets of genes, proteins, metabolites, organisms, etc.
 - a Universe (size = N) or background set
 - a set of interest (size = n)
 - a reference set (size = M) (share a common biological theme)
 - an overlap **k**

ORA: Over-Representation Analysis

What does an ORA? it compare **overlap** between **sets**.

- Sets of genes, proteins, metabolites, organisms, etc.
 - a Universe (size = N) or background set
 - a set of interest (size = **n**)
 - a reference set (size = M) (share a common biological theme)
 - an overlap **k**

- **N** genes measured in the assay
- n genes differentially expressed
- **M** genes annotated to a GO term of interest
- an overlap **k**

ORA: A practical example (1)

https://master.bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/analysis.html

ORA: A practical example (2)

https://master.bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/analysis.html

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
>		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
',;,→		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

$$Pigg(X \ge kigg) = 1 - \sum_{i=0}^{k-1} rac{igg(M \ i igg)igg(N-M \ n-i igg) }{igg(N \ n igg)}$$

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

	in BP set	not in BP set
in Gene set	k = 22	923
not in Gene set	169	14454

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
· ·:		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

	in BP set		not in BP	set
in Gene set	k =	22	923	
not in Gene set	169		14454	
			•	
			Ν	

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

	ir	ו BP	set	not in BP	set
in Gene set	k =	22		923	
not in Gene set	169			14454	
	•			7	
		Μ	N	1	

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

	ir	ו BP	set	not in BP	set
in Gene set	k =	22		923	
not in Gene set	169			14454	
		M	1	N	

clusterProfiler	ID	Description	GeneRatio	BgRatio	p.value	p.adjust	q.value
		neurotransmitter					
	GO:0006836	transport	22/945	191/15568	0.002881322	0.04909408	0.04278198

2 equivalent ways of representing and computing

Hypergeometric distribution

2 equivalent ways of representing and computing

2 equivalent ways of representing and computing

Wieder, C. et al. Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis. PLoS Comput Biol 17

ORA: Intuition via random sampling

ORA: Intuition via random sampling

ORA: Intuition via random sampling


```
N_SAMPLES <- 1000000
samples <- vector(mode = "numeric", length = N_SAMPLES)
for(i in 1:N_SAMPLES){
    s <- sample(size = 945, x = universe, replace = F)
    samples[i] <- sum(s %in% G0.0006836)
}
hist(samples, freq = F, breaks = seq(0,30,1))</pre>
```

What proportion of r**andom sets** sampled from the universe show more than 22 genes included in GO:0006836 ?

estimate = 0.002816

ORA: A practical example (1)

ORA: A practical example (1) - a broader DAG view

ORA: The Impact of the universe definition

ORA: The Impact of the universe definition

ORA: Impact of the database and gene set thresholds choices

ORA: Impact of the database and gene set thresholds choices

ORA: Impact of the database and gene set thresholds choices

How many significantly enriched Biological Processes ? (q.value < 0.01)

		GO BP 2013	GO BP 2021	GO BP 2023
2736 genes	q.value < 0.1	8	37	30
1068 genes	q.value < 0.01	4	44	40

Thresholds and database choices also have an impact of the number of enriched terms

ORA: Several biases

ORA: Several biases

ORA: It can be any gene sets - WGCNA example

ORA: It can be any gene sets - WGCNA example mapping on DAG

GSEA: A Function scoring method

- Recall of the impact of the threshold (q.value & logFC) on the ORA results
- All genes are not equivalent: sign and intensity of variation

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

+ GSEA

GSEA: A Function scoring method (1)

- Recall of the impact of the threshold (q.value & logFC) on the ORA results
- All genes are not equivalent: sign and intensity of variation

possible metrics: Log2FC, signed p-values, etc.

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

GSEA

GSEA: A Function scoring method (1)

- Recall of the impact of the threshold (q.value & logFC) on the ORA results
- All genes are not equivalent: sign and intensity of variation

Compute the Enrichment Score (ES)

──→ GSEA

Down

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

+: if gene in S

- : if gene not in S

Gene List Rank

GSEA: A Function scoring method (1)

- Recall of the impact of the threshold (q.value & logFC) on the ORA results
- All genes are not equivalent: sign and intensity of variation

Compute the Enrichment Score (ES)

etc.

GSEA

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.
- Recall of the impact of the threshold (q.value & logFC) on the ORA results
- All genes are not equivalent: sign and intensity of variation

Compute the Enrichment Score (ES)

etc.

GSEA

Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, *Bioinformatics*.

Is ES(S) significant?

• in unweighted settings (first version of GSEA): exact p-value estimation with KS-test

Is ES(S) significant?

- in unweighted settings (first version of GSEA): exact p-value estimation with KS-test
- in weighted settings (common): empirical estimation via permutation test (simulations Π)

Is ES(S) significant?

- in unweighted settings (first version of GSEA): exact p-value estimation with KS-test
- in weighted settings (common): empirical estimation via permutation test (simulations Π)

Is ES(S) significant ?

- in unweighted settings (first version of GSEA): exact p-value estimation with KS-test
- in weighted settings (common): empirical estimation via permutation test (simulations Π)

• How to account for Gene set size differences ?

```
NES (Normalised Enrichment Score)
```

NES(S) = $\frac{ES(S)}{E[ES(S,\Pi]]}$ Gives the direction of regulation + correct for gene set size + signed

Multiple-test correction: FDR estimation

GSEA: A Function scoring method - example

- No need of a cutoff on qvalue or LogFC, just a ranking metric !
- Results are separated between over and under expression BP
- Leading Edge subset can help to identify key actors
- However, same biases apply for database choices !

ORA vs GSEA: A visual comparison on the GO DAG graph

GSEA is more sensitive !

Enrichement Analyses - Conclusion

- Enrichment analyses (ORA or GSEA) are a powerful tool to suggest direction of interpretation and hypotheses
- ORA are simples and universals, but results can be affected by several biased: threshold, databases, universe.
- GSEA is not affected by thresholding are give more weight to the most discriminant genes
- Several biases remain:
 - Internal structure of pathway / interconnection between entities in a pathway
 - Overlap / interconnections between pathway
 - What about gene variants ?

What is a Graph? A graph is defined by a set of **nodes** and **edges**

Attributes/Properties

Relations/Paths

Different questions, different visualisation, different methods

What's a Knowledge Graph ?

Connect the knowledge
Knowledge Graphs

What's a Knowledge Graph ?

Connect the knowledge **Knowledge Graphs** Google knowledge graph The Walt Disney Compan subOrganization 30 Ridley ucasfilm Sci-fi November Scott 1937 production director nationality genre genre company Star Blade United birthDate gender Kingdom Wars Runner **Complex Information** Retrieval char nationality Han Tom larrison Male Solo Ford Simpson character gender gender name sameAS hasOccupation Professional https://en.wikipedia.org/wiki/Harrison Ford Cyclist source: ahrefs Kev: ----> Edges Nodes

Other movies by the actor of Han Solo XQ Q Tous 🔄 Images 🗉 Actualités 🔗 Shopping 🕞 Vidéos 🗄 Plus Paramètres Outils Harrison Ford > Films LE FUGITIF ADE RUNNE FORET Blade Runner Star Wars, Le Fugitif L'Appel de la Les Indiana Jones épisode IV : ... 1993 forêt et la Dernièr... 1982 Aventuriers ... 1977 1981 1989

What's a Knowledge Graph?

Connect the knowledge **Knowledge Graphs** Google knowledge graph The Walt Disner Compan subOrganization 30 Ridley ucasfilm Sci-fi Vovember Scott 1937 production nationality genre dire genre company Blade United Star birthDate gender Kingdom Wars Runner **Complex Information** Retrieval character subjectOf nationality actor Han Tom Harrison Male Solo Ford Simpson character gender gender name sameAS hasOccupation Professional https://en.wikipedia.org/wiki/Harrison Ford Cyclist source: ahrefs

Nodes

Kev: ----> Edges

What's a Knowledge Graph ?

Connect the knowledge **Knowledge Graphs** Google knowledge graph The Walt Disner Compar subOrganization 30 Ridley ucasfilm Sci-fi November Scott 1937 production director nationality company Star Blade United birthDate gender Kingdom Wars Runner **Complex Information** Retrieval character nationality Han Tom Harrison Male Solo Ford Simpson character gender gender name sameAS hasOccupation Professional https://en.wikipedia.org/wiki/Harrison Ford Cyclist source: ahrefs

Nodes

Kev: ----> Edges

What is a Graph ? A graph is defined by a set of **nodes** and **edges**

Attributes/Properties

Relations/Paths

Different questions, different visualisation, different methods

What is a Biomedical Knowledge Graph?

It's a directed and labeled multi-graph describing biomedical entities and their relations

- Different Model: RDF (in Semantic Web) and LPG (Labeled Property Graph)
- Efficient for complex information extraction
- Examples: Hetionet, Wikidata, PharmKG, FORUM, etc.

Example of Hetionet

How to request a Knowledge Graph (in Neo4J) - LPG

,∩eO4j Cypher

3 main clauses:

- MATCH: Specify the graph pattern
- WHERE: Add restrictions to the nodes or edges properties
- RETURN: Define what is included in the results

How to request a Knowledge Graph (in Neo4J) - LPG

,∩eO4j Cypher

3 main clauses:

- MATCH: Specify the graph pattern
- WHERE: Add restrictions to the nodes or edges properties
- RETURN: Define what is included in the results

```
How to write:
nodes: (variable:Label)
edges: -[variable:Label]->
```

(Label is optional)

How to request a Knowledge Graph (in Neo4J) - LPG

,∩eO4j Cypher

3 main clauses:

- MATCH: Specify the graph pattern
- WHERE: Add restrictions to the nodes or edges properties
- RETURN: Define what is included in the results

```
How to write:
nodes: (variable:Label) (Label is optional)
edges: -[variable:Label]->
```


MATCH (c:Compound)-[r1:DOWNREGULATES_CdG]->(g:Gene)<-[r2:UPREGULATES_DuG]-(d:Disease)
WHERE g.name IN ["BRCA1", "BRCA2", ...]
RETURN c, r1, g, r2, d</pre>

A more complex path

By selecting only the up-regulated genes (LogFC > 5)

Biomedical Knowledge Graphs as a resource to train link-prediction systems

=	Google Scholar	Link prediction	
÷	Articles	Environ 294 resultats (0,06 s) 294	
	Date indifferente	Systematic integration of biomedical knowledge prioritizes drugs for repurposing	
	Depuis 2023 Depuis 2022	P Rechercher parmi les articles qui s'y rapportent	
	Depuis 2019 Période spécifique	OpenBioLink: a benchmarking framework for large-scale biomedical link prediction	[PDF] arxiv.org
	Trier par pertinence	A Breit, S Ott, A Agibetoy, M Samwald - Bioinformatics, 2020 - academic.oup.com	
	Trier par date	quality and highly challenging biomedical ink prediction benchmark to transparently and	
	Territory Inc. Inc.	17 Enregistrer VV Citer Cite 41 fois Autres articles Les 7 versions	
	Recherche dans les pages en Français	An ensemble learning approach to perform Tink prediction on large scale biomedical knowledge graphs for drug repurposing and discovery	[PDF] biorxiv.org
		V Prabhakar, C Vu, J Crawford, J Walte, K Liu - bioRxiv, 2023 - biorxiv.org	
	Creer raierte	<u>Link precidential</u> from the KGE models trained on each subgraph are then aggregated to generate a consolidated set of <u>link predictions</u>	
		Neuro-symbolic XAI: Application to drug repurposing for rare diseases	
		M Drancé - International Conference on Database Systems for, 2022 - Springer	
		creating methods allowing to make transparent prediction in the context of drug repurposing	
		☆ Enregistrer 🕫 Citer Cite 5 fois Autres articles Les 3 versions	
		Adapting Neural Link Predictors for Complex Query Answering	(PDF) anxiv.org
		E Araketyan, P Minervini, I Augenstein - arXiv preprint arXiv:2301.12313, 2023 - arXiv.org	
		We must also factor in the neural link prediction ink prediction scores by backpropagating through the complex query-answering process. More formally, let up denote a neural link	
		☆ Enregistrer 99 Citer Autres articles Les 2 versions 30	
		[PPF] Neuro-symbolic XAI for Computational Drug Repurposing.	[PDF] scitepress.c
		M Drancé, M Boudin, E Mougin, G Dialio - KEOD, 2021 - scitepress.org	
		of ink prediction in a knowledge graph-based computational drug repurposing. Ank prediction how the constitution of data in a knowledge graph changes the quality of predictions.	
		☆ Enregistrer 00 Citer Cite 11 fois Autres articles Les 3 versions 00	
		Neural multi-hop reasoning with logical rules on biomedical knowledge graphs	IPOFI BIXIV.OID
		Y Liu, M Hildebrandt, M Joblin, M Ringsguandi The Semantic Web: 18th, 2021 - Springer	and the first sector of the
		We formulate this task as a link prediction problem where both compounds and diseases correspond to several state of the art methods for the prediction while providing intermetability	
		☆ Enregistrer 00 Citer Cite 40 tois Autres articles Les 8 versions	
		LinkExplorer: predicting, explaining and exploring links in large biomedical	[POF] biorxiv.org
		S Ott, A Barbosa-Silva, M Samwald - Bioinformatics, 2022 - academic.oup.com	
		together with predicted links and their the predictions of a state-of-the-art ink prediction	
		algorithm. We also report highly competitive evaluation results or our explainable <u>initial deviation</u> ☆ Enregistrer ØD Citer Autres articles Les 8 versions	
		Drug-drug interaction prediction on a biomedical literature knowledge graph	reper google.com
		K Bouglatiotis, F Alsopos, A Nentidis, A Krithara Artificial Intelligence in, 2020 - Springer	
		network and performs the prediction to construct an integrative model of drug efficacy	
		☆ Enregistrer Ø9 Citer Cite 14 fois Autres articles Les 4 versions	
		A Meta-Path-Based Prediction Method for Disease Comorbidities	
		EPG del Valle, LP Santamaria 2021 IEEE 34th, 2021 - leeexplore leee.org	
		The identification of new disease-disease relationships using ink prediction methods has	
		Invision any improves our understanding of their exclogy and pathogenesis, our has also made it ☆ Enregistree 190 Citer Cite 1 fois Autres articles. Les 2 versions	
		A secondational expression to do a secondation using much expression to the	
		A computational approach to drug repurposing using graph neural networks S Doshi, SP Chepuri - Computers in Biology and Medicine, 2022 - Elsevier	[HTML] NIN. GOV
		We perform link prediction using considered GNN models on the constructed graphs,	

starting with the only drug-disease two-layered graph, followed by the individual addition of the .

Biomedical Knowledge Graphs as a resource to train link-prediction systems

We perform <mark>IIIAs preclubics using consistence GNN models on the constructed graphs, starting with the only drug-disease two-layered graph, followed by the individual addition of the ...
</mark>

Use a Biomedical Knowledge Graph to build a Enrichment custom background set

What class of drugs in enriched for their relation with the set of genes of interest ? (ORA)

From LPG to Semantic Web

Labeled Property Graph (LPG) - eg. Neo4J

- Efficient extraction of relations (or paths) between entities
- The graph is flexible
- Q1: But what if we want to use relations beyond what is stored in Hetionet ? Like information from UniProt, Rhea, Wikidata, etc.
- Q2: What if we want to reason on the graph?

We would need something like the Gene **Ontology**, but for pharmacological classes !

A Semantic description of entities and relations

A Semantic description of entities and relations

Semantic Web: technical introduction

A stack of technologies

Even Aussois is described in a Knowledge Graph ...

DBpedia 🐵 Browse using 👻 🗎 Formats 🕶

🖸 Faceted Browser 🛛 Sparql Endpoint

About: <u>Aussois</u>

An Entity of Type: place, from Named Graph: <u>http://dbpedia.org</u>, within Data Space: <u>dbpedia.org</u>

Aussois (French pronunciation: [oswa]) is a commune in the Vanoise massif, in the Savoie department in the Auvergne-Rhône-Alpes region in south-eastern France. The village is on the border of France's first National Park, the Vanoise National Park. Although not as well known as other resorts right on the other side of the mountain like Val Thorens, it is popular with the French as ski resort in winter and as mountain destination in summer. At 8 km (5.0 mi) from Modane, it is ideally located in the Maurienne region with good transport links in and out of Lyon, Geneva, Grenoble and Chambéry. Aussois can also be reached from Turin via the Fréjus Road Tunnel, linking Bardonecchia in Italy and Modane. Nearby Gare de Modane is a large railway station with a high-speed service (TGV) Paris - Cham

Property	Value • 41.94		
dbo:PopulatedPlace/area			
<u>dbo:abstract</u>	 Aussois (French pronunciation: [oswa]) is a commune in the Vanoise massif, in the Savoie department in the Auvergne-Rhône-Alpes region in south-eastern France. The village is on the border of France's first National Park, the Vanoise National Park. Although not as well known as other resorts right on the other side of the mountain like Val Thorens, it is popular with the French as ski resort in winter and as mountain destination in summer. At 8 km (5.0 mi) from Modane, it is ideally located in the Maurienne region with good transport links in and out of Lyon, Geneva, Grenoble and Chambéry. Aussois can also be reached from Turin via the Fréjus Road Tunnel, linking Bardonecchia in Italy and Modane. Nearby Gare de Modane is a large railway station with a high-speed service (TGV) Paris - Chambéry - Turin - Milan.The resort offers 55 km (34 mi) of slopes, 21 slopes (6 Green, 5 Blue, 8 Red, 2 Black). (en) 		
dbo:area	• 41940000.000000 (xsd:double)		
dbo:canton	• dbr:Modane		
dbo:country	• <u>dbr:France</u>		
dbo:inseeCode	• 73023		
dbo:intercommunality	<u>dbr:Communauté_de_communes_Haute_Maurienne_Vanoise</u>		

Even Aussois is described in a Knowledge Graph ...

http://dbpedia.org http://www.w3.org http://www.w3.org/2002/07/owl#Thing /resource/Aussois /1999/02/22-rdf-syntax-🔆 DBpedia 💿 Browse using 🔹 🖺 Formats 🛪 ns#type http://dbpedia.org http://www.w3.org http://dbpedia.org/ontology/Place About: Aussois /resource/Aussois /1999/02/22-rdf-syntaxns#tvpe http://dbpedia.org http://www.w3.org http://dbpedia.org/ontology/Location /resource/Aussois /1999/02/22-rdf-syntaxns#type http://dbpedia.org http://www.w3.org http://schema.org/Place /resource/Aussois /1999/02/22-rdf-syntaxns#type http://dbpedia.org http://www.w3.org http://www.wikidata.org/entity/Q486972 /resource/Aussois /1999/02/22-rdf-syntaxns#type http://dbpedia.org http://www.w3.org http://dbpedia.org/ontology/PopulatedPlace /resource/Aussois /1999/02/22-rdf-syntax-Property Value ns#type And behind is just triples http://dbpedia.org http://www.w3.org http://dbpedia.org/class/yago/WikicatCommunesOfSavoie • 41.94 /resource/Aussois /1999/02/22-rdf-syntaxns#type • Aussois (French pronunciation: [oswa]) is a commune in the Vanoise massif, in the Savoie department http://dbpedia.org http://www.w3.org http://www.w3.org/2003/01/geo/wgs84 pos#SpatialThing /resource/Aussois /1999/02/22-rdf-syntaxns#type destination in summer. At 8 km (5.0 mi) from Modane, it is ideally located in the Maurienne region with http://dbpedia.org http://www.w3.org http://dbpedia.org/class/yago/WikicatSkiAreasAndResortsInFrance /resource/Aussois /1999/02/22-rdf-syntax-Nearby Gare de Modane is a large railway station with a high-speed service (TGV) Paris - Chambéry - T ns#type http://dbpedia.org http://www.w3.org http://dbpedia.org/class/yago/AdministrativeDistrict108491826 /resource/Aussois /1999/02/22-rdf-syntax-• 41940000.000000 (xsd:double) ns#type http://dbpedia.org http://www.w3.org http://dbpedia.org/class/yago/Area108497294 • dbr:Modane /resource/Aussois /1999/02/22-rdf-syntaxns#type http://dbpedia.org http://www.w3.org dbr:France http://dbpedia.org/class/yago/Commune108541609 /resource/Aussois /1999/02/22-rdf-syntaxns#type • 73023 • dbr:Communauté de communes Haute Maurienne Vanoise
The Web of Life Sciences

...

Data Sharing

decentralisation

The Web of Life Sciences: As a identifier mapping tool

gene 🔶	ensembl_geme_id	entrez_id	civic_id \$	hgnc_id \$	OMID_id \$	mesh_id
Q wd:Q227339	ENSG0000012048	672	6	1100	113705	D019398
Q wd:Q238509	ENSG00000178394	3350		5286	109760	
Q wd:Q248215	ENSG00000158560	1780		2963	603772	
Q wd:Q282418	ENSG00000150455	114609		17192	606252	
Q wd:Q286987	ENSG00000165029	19		29	600046	
Q wd:Q289013	ENSG00000175899	2		7	103950	
Q wd:Q369310	ENSG00000125651	2962		4652	189968	
Q wd:Q372645	ENSG00000213780	2968		4658	601760	
Q wd:Q390540	ENSG00000151617	1909		3179	131243	
Q wd:Q390543	ENSG00000136160	1910		3180	131244	
Q wd:Q40108	ENSG00000139687	5925	4795	9884	614041	
Q wd:Q407983	ENSG00000087085	43		108	100740	

The Web of Life Sciences: A federated query example

Find compounds used as drugs for diseases caused by mutations on BRCA2

{

1

Get all disease for which BRCA2 is a biomarker

Find all related compounds that are classified as drug

The Web of Life Sciences: An example of Literature discovery

Biomedical Knowledge Graph

- Biomedical KG can help to explore new connections between entities
- They can also be used for building a custom background set in enrichment.
- Semantic Web act as a bridge between biomedical databases on the Web
 - An unified framework to describe entities and their relations
 - Integrates vocabulary, ontologies for a semantic description
- Need to understand the **schema** of the KG, before requesting
- Build your own Biomedical KG ! Use BioCypher

The End

Resources

- Enrichment analysis
 - Biblio & Resources
 - Wieder, C. et al. Pathway analysis in metabolomics: Recommendations for the use of over-representation analysis. PLoS Comput Biol 17
 - https://colab.research.google.com/drive/18pLzc_pv7Fpclotx4byYh9qMDjtnyG_u?usp=sharing
 - García-Campos, M.A. et al. 2015. Pathway Analysis: State of the Art. Front Physiol
 - Subramanian, A. et al., 2005. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
 - James H Joly et al., 2019, Differential Gene Set Enrichment Analysis: a statistical approach to quantify the relative enrichment of two gene sets, Bioinformatics.
 - https://www.pathwaycommons.org/guide/primers/data_analysis/gsea/
- Biomedical KG & Co.
 - LPG
 - Hetionet: <u>https://het.io/about</u>
 - Drug Repurposing Knowledge Graph (DRKG): <u>https://github.com/gnn4dr/DRKG</u>
 - BioKG: <u>https://github.com/dsi-bdi/biokg</u>
 - PharmKG: <u>https://academic.oup.com/bib/article/22/4/bbaa344/6042240</u>
 - Web-Semantic
 - MetaNetX: https://www.metanetx.org/
 - Wikidata: <u>https://www.wikidata.org/wiki/Wikidata:Main_Page</u>
 - DisGeNeT: <u>https://www.disgenet.org/</u>
 - Rhea: <u>https://www.rhea-db.org/</u>
 - UniProt: https://www.uniprot.org/help/uniprotkb
 - Other resources
 - Cypher Cheat Sheet: <u>https://neo4j.com/docs/cypher-cheat-sheet/5/auradb-enterprise/</u>
 - BioCypher: <u>https://biocypher.org/</u>
 - Web-semantic MOOC: <u>https://www.fun-mooc.fr/fr/cours/web-semantique-et-web-de-donnees/</u>
 - Neo4J: <u>https://www.youtube.com/channel/UCvze3hU6OZBkB1vkhH2IH9Q</u>

Resources

- <u>https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples</u>
- <u>https://www.wikipathways.org/sparql.html</u>
- Others Enrichment analysis methods:
 - <u>https://pubmed.ncbi.nlm.nih.gov/14693814/</u>
 - <u>https://pubmed.ncbi.nlm.nih.gov/15647293/</u>
 - https://pubmed.ncbi.nlm.nih.gov/15941488/

S. Henry and B. T. McInnes. Literature Based Discovery : Models, methods, and trends. Journal of Biomedical Informatics, 74 :20–32, Oct. 2017.

