library(tidyverse)
library(TCGAbiolinks)
library(SummarizedExperiment)
library(clusterProfiler)
library(DOSE)
library(AnnotationHub)
library(neo4r)
library(GO.db)
library(GOxploreR)
library(data.table)
library(annotate)
library(DT)
library(visNetwork)

1. Case study: Pan Cancer downstream analysis BRCA - TCGA-BRCA project

1.1 Data:

  • 5 normal samples
  • 5 tumor samples

The full pipeline analysis of the raw data can be found here. More info on the original project here

1.2 Accessing and processing the original raw data

Raw data are first downloaded, pre-processsed, normalized and filtered. Then, the differential expression analysis is computed with the standard pipeline provided by the TCGAbiolinks package.

Alternatively, one can directly load the final result table in the next chunck .

1.3 Loading and filtering differential analysis results

  • Load the data.rda file containing the output of the differential expression analysis.
  • Extract the Universe as the list of gene labels.
  • Apply cutoffs on fdr (aka q.value) and logFC to select an initial list of significantly differentially expressed genes. We start by applying a standard \(|LogFC| > 1\) and \(q.value < 1e-2\).
  • Select the list of gene labels associated with this set
# Load data and extract all gene symbols, i.e the future universe
load("data.rda")
universe <- unique(data$gene_name)

# Filtering data and extract symbols 
filtered_data <- data[abs(data$logFC) > 1 & data$FDR < 0.01, ]
DE.set <- unique(filtered_data$gene_name)

Get annotations to GO

To extract the annotations to the Gene Ontology, we are gonna use the AnnotationHub service, using the code to extract data for Homo Sapiens, key: “AH111575”

hub <- AnnotationHub()
query(hub, "Homo Sapiens")
## AnnotationHub with 26629 records
## # snapshotDate(): 2023-04-25
## # $dataprovider: BroadInstitute, UCSC, Ensembl, GENCODE, UWashington, Stanfo...
## # $species: Homo sapiens, homo sapiens
## # $rdataclass: GRanges, BigWigFile, Rle, ChainFile, TwoBitFile, list, TxDb, ...
## # additional mcols(): taxonomyid, genome, description,
## #   coordinate_1_based, maintainer, rdatadateadded, preparerclass, tags,
## #   rdatapath, sourceurl, sourcetype 
## # retrieve records with, e.g., 'object[["AH5012"]]' 
## 
##              title                                   
##   AH5012   | Chromosome Band                         
##   AH5013   | STS Markers                             
##   AH5014   | FISH Clones                             
##   AH5015   | Recomb Rate                             
##   AH5016   | ENCODE Pilot                            
##   ...        ...                                     
##   AH111393 | LRBaseDb for Homo sapiens (Human, v005) 
##   AH111495 | MeSHDb for Homo sapiens (Human, v005)   
##   AH111575 | org.Hs.eg.db.sqlite                     
##   AH111585 | TxDb.Hsapiens.UCSC.hg38.knownGene.sqlite
##   AH113665 | Ensembl 110 EnsDb for Homo sapiens
# Get the OrgDB reference annotation: org.Hs.eg.db.sqlite
HS.annotation <- hub[["AH111575"]]

2. GO Over-Representation Analysis

2.1 Compute ORA on Biological Processes

Compute an ORA analysis on the previously extracted list of differentially expression genes and Gene Ontology.

  • library: clusterProfiler

See ?enrichGO for details on the arguments.

We use the list of significantly differentially expressed genes and the whole list of protein coding genes in the assay as universe. No contrain applied on the size of GO terms sets.

Then, we plot !

ego <- enrichGO(gene = DE.set,
                universe = universe,
                OrgDb = HS.annotation,
                ont = "BP",
                keyType = "SYMBOL",
                pAdjustMethod = "BH", 
                minGSSize = 1,
                maxGSSize = 100000)
DT::datatable(ego@result %>% dplyr::select(-geneID), options = list(pageLength = 20))
## Warning in instance$preRenderHook(instance): It seems your data is too big for
## client-side DataTables. You may consider server-side processing:
## https://rstudio.github.io/DT/server.html
dotplot(ego, showCategory=20, font.size=25) +
  theme(legend.key.size = unit(2, 'cm'), legend.text = element_text(size=25), legend.title = element_text(size=25))

2.2 KEGG Over-Representation Analysis

  • Same as with GO, but with KEGG pathways.

  • Adapt the identifiers for KEGG: needs ENTREZID instead of gene SYMBOLS

# Mapping between Gene symbol and Entrez ID
universe2 <- bitr(universe, fromType="SYMBOL", toType = "ENTREZID", OrgDb = HS.annotation)
## Warning in bitr(universe, fromType = "SYMBOL", toType = "ENTREZID", OrgDb =
## HS.annotation): 1.95% of input gene IDs are fail to map...
universe2 <- universe2$ENTREZID

DE.set2 <- bitr(DE.set, fromType="SYMBOL", toType = "ENTREZID", OrgDb = HS.annotation)
## Warning in bitr(DE.set, fromType = "SYMBOL", toType = "ENTREZID", OrgDb =
## HS.annotation): 1.59% of input gene IDs are fail to map...
DE.set2 <- DE.set2$ENTREZID

ekegg <- enrichKEGG(
  gene = DE.set2,
  organism = "hsa",
  keyType = "ncbi-geneid",
  pAdjustMethod = "BH",
  universe = universe2,
  use_internal_data = FALSE)
DT::datatable(ekegg@result %>% dplyr::select(-geneID), options = list(pageLength = 20))
dotplot(ekegg, showCategory=20, font.size=25) +
  theme(legend.key.size = unit(2, 'cm'), legend.text = element_text(size=25), legend.title = element_text(size=25))

2.3 Vizualise ORA on the Gene Ontology DAG graph for a specific enriched GO term

2.3.1 Sub-region vizualition

First, we are gonna define an helper functions in order to plot the hierarchical structure on the Gene Ontology in a dynamic vizualisation using VizNetwork

However, the whole graph is big, so let’s focus first on a particular sub-region: the “nuclear division” GO-term (GO:0000280)

The visualization of the DAG will allow you to appreciate the hierarchical relations between the enriched terms and identify the different levels of enrichment.

# Get ancestors and direct children
GO.term <- "GO:0000280"
GO_ancestors <- sapply(GO.term, function(x) {GOBPANCESTOR[[x]]})
GO_children <- sapply(GO.term, function(x) {GOBPCHILDREN[[x]]})
GO_hierarchy <- unique(c(GO.term, unlist(GO_ancestors), unlist(GO_children)))

# Map enrichment results
GO_hierarchy <- GO_hierarchy[! is.na(GO_hierarchy)]

# Prepare nodes
dom_graph <- prep_parents_graph(GO_hierarchy)
nodes <- dom_graph$nodes
fdrScalePal <- colorRampPalette(c('#E0F4FF', "#ff8829"))
fdrScale <- fdrScalePal(100)

# Prepare data for plot
nodes <- nodes %>% 
  left_join((ego@result %>% dplyr::select(ID, GeneRatio, BgRatio, qvalue)), by = c("id"="ID")) %>% 
  mutate(label = paste(label, paste0("GeneRatio=", GeneRatio), paste0("BgRatio=", BgRatio), paste0("qvalue=", signif(qvalue, 3)), sep = "\n"), fdrscale.val=-log10(qvalue)) %>% 
  replace_na(list(fdrscale.val=0)) %>% 
  mutate(color.background = fdrScale[cut(fdrscale.val, breaks = 100)]) %>%
  dplyr::select(-c(GeneRatio, qvalue, fdrscale.val))

# Plot graph 
plot <- visNetwork(nodes, dom_graph$edges, width="100%", height = 1000,
           main=paste0("Explore GO BP enrichment in GO DAG ontology"),) %>%
    visOptions(highlightNearest = list(enabled = TRUE, algorithm = "hierarchical"), selectedBy = "label") %>%
    visPhysics(solver = "hierarchicalRepulsion", hierarchicalRepulsion = list(avoidOverlap = 1)) %>%
    visHierarchicalLayout(direction = "UD", blockShifting=FALSE, nodeSpacing=200) %>%
    visLegend(addEdges = dom_graph$leg_edges)
visSave(plot, "nuclear_division_dag_vizu.html")

Visualize the graph on the exported html document: nuclear_division_dag_vizu.html

2.3.2 Vizualise all significant ORA results (q.value \(< 1e-2\)) on the Gene Ontology DAG graph

  • Select only the GO terms enriched with a q.value \(< 1e-2\) and the union of all their ancestors.

  • Different regions of the DAG are enriched.

# Get ancestors
selected_go_bp <- ego@result[ego@result$qvalue <= 1e-2, ]$ID
all_ego_dag <- sapply(selected_go_bp, function(x) {GOBPANCESTOR[[x]]})
all_ego_dag <- unique(c(selected_go_bp, unlist(all_ego_dag)))

# Map enrichment results
all_ego_dag <- all_ego_dag[! is.na(all_ego_dag)]

# Prepare nodes
dom_graph <- prep_parents_graph(all_ego_dag)
nodes <- dom_graph$nodes
fdrScalePal <- colorRampPalette(c('#E0F4FF', "#ff8829"))
fdrScale <- fdrScalePal(100)

nodes <- nodes %>% 
  left_join((ego@result %>% dplyr::select(ID, GeneRatio, BgRatio, qvalue)), by = c("id"="ID")) %>% 
  mutate(label = paste(label, paste0("GeneRatio=", GeneRatio), paste0("BgRatio=", BgRatio), paste0("qvalue=", signif(qvalue, 3)), sep = "\n"), fdrscale.val=-log10(qvalue)) %>% 
  replace_na(list(fdrscale.val=0)) %>% 
  mutate(color.background = fdrScale[cut(fdrscale.val, breaks = 100)]) %>%
  dplyr::select(-c(GeneRatio, qvalue, fdrscale.val))

# Plot graph 
plot <- visNetwork(nodes, dom_graph$edges, width="100%", height = 1000,
           main=paste0("Explore GO BP enrichment in GO DAG ontology"),) %>%
    visOptions(highlightNearest = list(enabled = TRUE, algorithm = "hierarchical"), selectedBy = "label") %>%
    visPhysics(solver = "hierarchicalRepulsion", hierarchicalRepulsion = list(avoidOverlap = 1)) %>%
    visHierarchicalLayout(direction = "UD") %>%
    visLegend(addEdges = dom_graph$leg_edges)
visSave(plot, "ego_dag_vizu.html")

Visualize the graph on the exported html document: ego_dag_vizu.html

2.4 Reproducting the ClusterProfiler analysis manually (Example “neurotransmitter transport” - GO:0006836)

Have a look at the GO-term “neurotransmitter transport” (GO:0006836)

2.4.1 With a right-tailed fisher exact test

To build the contingency table, we need:

  • The size of the universe
  • The size of the gene set
  • The size of the GO-term gene set
  • The number of gene that overlap between the two sets.
# Get all annotation between NCBI Gene Symbol and GO-terms 
all <- AnnotationDbi::select(HS.annotation, keytype="SYMBOL", keys=universe, columns="GOALL")

# Retrieve all GENE Symbols associated to neurotransmitter transport
table.GO.0006836 <- AnnotationDbi::select(HS.annotation, keytype="GOALL", keys="GO:0006836", columns="SYMBOL")
GO.0006836 <- unique(table.GO.0006836$SYMBOL)

# get the "real" universe size : remove all symbols without annotation to any BP from the universe
all_BP_universe <- all %>% filter(! is.na(ONTOLOGYALL)) %>% filter(ONTOLOGYALL == "BP")
manual_universe <- universe[universe %in% all_BP_universe$SYMBOL]

# get the "real" gene set size also by excluding genes without annotation to BP
manual_gene_set <- DE.set[DE.set %in% all_BP_universe$SYMBOL]

# Remove symbols associated to GO:0006836 that are not in our universe
GO.0006836 <- GO.0006836[GO.0006836 %in% manual_universe]

# Get intersection size
intersection <- sum(manual_gene_set %in% GO.0006836)

Building the contingency table:

L_GO_set <- length(GO.0006836)
L_DE_set <- length(manual_gene_set)
L_universe <- length(manual_universe)
contingency.table <- matrix(c(intersection, L_DE_set - intersection, L_GO_set - intersection, L_universe - intersection - (L_DE_set - intersection) - (L_GO_set - intersection)), ncol = 2, byrow = T)
f.test <- fisher.test(contingency.table, alternative = "greater")
print(f.test$p.value)
## [1] 0.002881322

We retrieve the exact p-value as computed by ClusterProfiler.

2.4.2 With an Hypergeomtric test:

phyper(q = (intersection - 1), m = L_GO_set, n = L_universe - L_GO_set, k = L_DE_set, lower.tail = F)
## [1] 0.002881322

2.4.3 With simulations

To better grasp what do these probabilities mean, we are gonna randomly sample \(k\) gene symbols from the universe, where \(k\) is our gene set size, and estimate our frequently we observed at least as much gene that overlap with the set of the selected GO term (GO:0006836).

# Draw 1000.000 sample of size L_DE_set from manual_universe
N_SAMPLES <- 1000000
samples <- vector(mode = "numeric", length = N_SAMPLES)
for(i in 1:N_SAMPLES){
    s <- sample(size = L_DE_set, x = manual_universe, replace = F)
    samples[i] <- sum(s %in% GO.0006836)
}
hist(x=samples, freq = F, breaks = seq(0,33,1))

a <- sum(samples >= intersection)
print(paste("Estinate: ", a / N_SAMPLES))
## [1] "Estinate:  0.002864"

We get a good estimate of the previously observed p.values.

2.5 Studying the impact of the universe (background set) on the enrichment results:

  • What if you don’t use an assay-specific universe, but simply the whole transcriptome ?
ego.no.bg <- enrichGO(gene = DE.set,
                universe = NULL, # Don't precise the universe !
                OrgDb = HS.annotation,
                ont = "BP",
                keyType = "SYMBOL",
                pAdjustMethod = "BH",
                minGSSize = 1,
                maxGSSize = 100000)

# Align, order, select top 20 and plot
comparison.bg <- ego.no.bg@result %>% dplyr::select(ID, pvalue) %>% left_join((ego@result %>% dplyr::select(ID, pvalue)),  by = "ID")
rownames(comparison.bg) <- NULL
colnames(comparison.bg) <- c("GO.ID", "unspecific.universe", "universe")
comparison.bg <- comparison.bg[order(comparison.bg$unspecific.universe, decreasing = F), ]

top.comparison.bg <- comparison.bg[1:20, ]
data.plot <- top.comparison.bg %>% pivot_longer(cols = c("unspecific.universe", "universe")) 
data.plot$GO.ID <- factor(data.plot$GO.ID, levels = top.comparison.bg$GO.ID)

How do the p.values for the top-10 enriched GO-terms evolved ?

data.plot %>% ggplot(aes(x = GO.ID, y = -log10(value), fill = name)) + geom_bar(stat = "identity", position = "dodge") + theme_classic() + theme(axis.text.x = element_text(angle=90, hjust=1), axis.text = element_text(size = 25), axis.title = element_text(size = 22), legend.title = element_text(size=20), legend.text = element_text(size=20), legend.key.size = unit(2, 'cm'))

How much significantly enriched GO-terms are detected with the both universe?

print(paste("Number of enriched BP with assay-specific universe: ", nrow(ego@result[ego@result$qvalue <= 1e-3, ])))
## [1] "Number of enriched BP with assay-specific universe:  133"
print(paste("Number of enriched BP without assay-specific universe: ", nrow(ego.no.bg@result[ego.no.bg@result$qvalue <= 1e-3, ])))
## [1] "Number of enriched BP without assay-specific universe:  218"
  • The number of enriched GO terms is different.

  • The p.value is over-estimated.

2.6 Studying the impact of the cutoff choices or database choices on the enrichment results

There are two main other choices that can affect the enrichment results.

  • the choice of the reference database, or even its version
  • the cutoff applied on the p.value / LogFC.

We are gonna test 6 combinations: (GO BP v.2013, GO BP v.2021, GO BP v.2023) \(\times\) (\(q.value < 0.1\), \(q.value < 0.01\))

# Loading different versions of the GO-BPs from EnrichR database.
path <- "./BP-archive/"
ontology_files <- c("GO_Biological_Process_2023", "GO_Biological_Process_2021", "GO_Biological_Process_2013") # , "GO_Biological_Process_2017", 

# RETURN TERM2GENE and TERM2NAME 
parse_ontology <- function(ontology_file){
  
  terms <- c()
  genes <- c()
  names <- c()

  for(line in read_lines(ontology_file)){
      parsed_line <- str_split(line, pattern = "\t", simplify = T)
      preprocessed_name <- parsed_line[1]
      parsed_preprocessed_name <- str_split(preprocessed_name, pattern = "[()]", simplify = T)
      name <- substr(parsed_preprocessed_name[1], 1, nchar(parsed_preprocessed_name[1]) - 1)
      term <- parsed_preprocessed_name[length(parsed_preprocessed_name) - 1]
      genes_list <- parsed_line[3:length(parsed_line)]
      genes_list <- genes_list[genes_list != ""]
  
      terms <- c(terms, rep(term, length(genes_list)))
      genes <- c(genes, genes_list)
      names <- c(names, name)
  }
  
  term2genes <- data.frame(TERM=terms, GENE=genes)
  term2name <- data.frame(TERM=unique(terms), NAME = names)
  
  return(list("term2gene" = term2genes, "term2name" = term2name))
}


threshold_vector <- list(c(1, 0.01), c(1, 0.1))  # c(1, 0.05), 

out <- data.frame()

for(ontology_file in ontology_files){
    
    ont <- parse_ontology(file.path(path, ontology_file))
    
    for(thresholds in threshold_vector){
      th_fc <- thresholds[1]
      th_pv <- thresholds[2]
      
      # Filtering data and extract symbols 
      DE.set.eval <- unique(data[abs(data$logFC) > th_fc & data$FDR < th_pv, ]$gene_name)
      print(paste("Number of signficiant genes with logFC >", th_fc, "q.value <", th_pv, ":", length(DE.set.eval)))
      ego.eval <- enricher(gene = DE.set.eval,
                  universe = universe,
                  TERM2GENE = ont$term2gene,
                  TERM2NAME = ont$term2name,
                  minGSSize = 1,
                  maxGSSize = 100000,
                  pAdjustMethod = "BH")
      
      sub.out <- ego.eval@result
      sub.out["threshold"] <- paste0("|LogFC| > ", th_fc, "; q.v < ", th_pv)
      sub.out["ontology"] <- ontology_file
      
      out <-  rbind(out, sub.out)
      }
}
## [1] "Number of signficiant genes with logFC > 1 q.value < 0.01 : 1068"
## [1] "Number of signficiant genes with logFC > 1 q.value < 0.1 : 2736"
## [1] "Number of signficiant genes with logFC > 1 q.value < 0.01 : 1068"
## [1] "Number of signficiant genes with logFC > 1 q.value < 0.1 : 2736"
## [1] "Number of signficiant genes with logFC > 1 q.value < 0.01 : 1068"
## [1] "Number of signficiant genes with logFC > 1 q.value < 0.1 : 2736"
reorder_within <- function(x, by, within1, within2, fun = mean, sep = "___", ...) {
    new_x <- paste(x, paste0(within1, within2), sep = sep)
    stats::reorder(new_x, by, FUN = fun)
}

scale_x_reordered <- function(..., sep = "___") {
    reg <- paste0(sep, ".+$")
    ggplot2::scale_x_discrete(labels = function(x) gsub(reg, "", x), ...)
}
# Plot
out %>% dplyr::select(ID, Description, pvalue, threshold, ontology) %>% 
  group_by(threshold, ontology) %>% 
  slice(1:10) %>% 
  ungroup() %>% 
  ggplot(aes(x = reorder_within(Description, -log10(pvalue), threshold, ontology), y = -log10(pvalue))) + 
    geom_bar(stat = "identity") + 
    coord_flip() + 
    scale_fill_brewer(palette="Spectral") + 
    theme_classic() + 
    scale_x_reordered() +
    theme(axis.text = element_text(size = 10)) +
    facet_wrap(as.factor(threshold) ~ as.factor(ontology), scales="free_y")

  • The bias effects combine !

  • The enriched terms and their order are affected.

  • On the cutoff choices, there is a trade-off between noise and detection sensibility.

Maybe there is an other method that can prevent from imposing a threshold ?

3 GSEA (Gene Set Enrichment Analysis) - A Functional Scoring Class Method

  • We need a ranking metric: we choose the LogFC. But p.value, or a mixture of the both can also be used.

  • We set no constrains on the GO terms gene set sizes.

3.1 Compute a GSEA

# apply gsea (with gene set permutation)
ordered.genes <- data %>% arrange(desc(logFC))
gsea.input <- ordered.genes$logFC
names(gsea.input) <- ordered.genes$gene_name
res.gsea.go <- gseGO(geneList = gsea.input, 
      ont = "BP",
      OrgDb = HS.annotation,
      keyType = "SYMBOL",
      pAdjustMethod = "BH",
      minGSSize = 1, 
      maxGSSize = 100000,
      pvalueCutoff = 1)
## preparing geneSet collections...
## GSEA analysis...
## Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize, gseaParam, : There are ties in the preranked stats (0.04% of the list).
## The order of those tied genes will be arbitrary, which may produce unexpected results.
## Warning in preparePathwaysAndStats(pathways, stats, minSize, maxSize,
## gseaParam, : There are duplicate gene names, fgsea may produce unexpected
## results.
## Warning in fgseaMultilevel(pathways = pathways, stats = stats, minSize =
## minSize, : There were 8 pathways for which P-values were not calculated
## properly due to unbalanced (positive and negative) gene-level statistic values.
## For such pathways pval, padj, NES, log2err are set to NA. You can try to
## increase the value of the argument nPermSimple (for example set it nPermSimple
## = 10000)
## Warning in fgseaMultilevel(pathways = pathways, stats = stats, minSize =
## minSize, : For some pathways, in reality P-values are less than 1e-10. You can
## set the `eps` argument to zero for better estimation.
## leading edge analysis...
## done...
DT::datatable(res.gsea.go@result, options = list(pageLength = 20))
## Warning in instance$preRenderHook(instance): It seems your data is too big for
## client-side DataTables. You may consider server-side processing:
## https://rstudio.github.io/DT/server.html
dotplot(res.gsea.go, font.size=20, showCategory=10, split=".sign", x="GeneRatio", decreasing = TRUE, color="qvalue") + 
  scale_colour_gradient(low="red", high="blue", limits = c(1e-10, 0.01), guide=guide_colorbar(reverse=FALSE) ) +
  facet_grid(. ~ .sign) +
  theme(legend.key.size = unit(2, 'cm'), legend.text = element_text(size=25), legend.title = element_text(size=25))

  • The NES scores (and also ES) allow to determine the direction of enrichment: activated or supressed.

3.2 Vizualise ORA on the Gene Ontology DAG graph for a specific enriched GO term:

  • monocarboxylic acid metabolic process (GO:0032787) which is suppressed.

  • neurotransmitter transport (GO:0000280) which is activated.

Visualize the GO-terms relationships around the two enriched GO terms.

# Get only ancestors
# selected_go_bp_gsea <- res.gsea.go@result[res.gsea.go@result$qvalue <= 1e-2, ]$ID
selected_go_bp_gsea <- c("GO:0000280", "GO:0032787")

all_ego_dag_gsea <- sapply(selected_go_bp_gsea, function(x) {GOBPANCESTOR[[x]]})
all_ego_dag_gsea <- unique(c(selected_go_bp_gsea, unlist(all_ego_dag_gsea)))

# Map enrichment results
all_ego_dag_gsea <- all_ego_dag_gsea[! is.na(all_ego_dag_gsea)]

# Prepare nodes
dom_graph <- prep_parents_graph(all_ego_dag_gsea)
nodes <- dom_graph$nodes
fdrScalePal <- colorRampPalette(c('#E0F4FF', "#ff8829"))
fdrScale <- fdrScalePal(100)

nodes <- nodes %>% 
  left_join((res.gsea.go@result %>% dplyr::select(ID, setSize, NES, qvalue)), by = c("id"="ID")) %>% 
  mutate(label = paste(label, paste0("setSize=", setSize), paste0("NES=", signif(NES, 3)), paste0("qvalue=", signif(qvalue, 3)), sep = "\n"), fdrscale.val=-log10(qvalue)) %>% 
  replace_na(list(fdrscale.val=0)) %>% 
  mutate(color.background = fdrScale[cut(fdrscale.val, breaks = 100)]) %>%
  mutate(borderWidth = 3) %>%
  mutate(color.border = ifelse(NES > 0, "red", "blue")) %>%
  dplyr::select(-c(setSize, NES, fdrscale.val))

# Plot graph 
plot <- visNetwork(nodes, dom_graph$edges, width="100%", height = 1000,
           main=paste0("Explore GO BP enrichment in GO DAG ontology - GSEA"),) %>%
    visOptions(highlightNearest = list(enabled = TRUE, algorithm = "hierarchical"), selectedBy = "label") %>%
    visPhysics(solver = "hierarchicalRepulsion", hierarchicalRepulsion = list(avoidOverlap = 1)) %>%
    visHierarchicalLayout(direction = "UD") %>%
    visLegend(addEdges = dom_graph$leg_edges)
visSave(plot, "gsea_dag_vizu.html")

Visualize the graph on the exported html document: gsea_dag_vizu.html

  • Both Biological Process, but in distinct regions of the DAG.
  • Their enrichment is consistent with their ancestors/children.

3.3 Comparing ORA .vs. GSEA

Comparing significantly enriched GO terms by the both methods: \(q.value \le 1e-3\). We are gonna vizualise the differences in terms of enrichment directly on the DAG graph.

# Select enriched GO terms
selected_go_bp_gsea <- res.gsea.go@result[res.gsea.go@result$qvalue <= 1e-3, ]$ID
selected_go_bp_ora <- ego@result[ego@result$qvalue <= 1e-3, ]$ID
selected_go_bp_comparison <- unique(c(selected_go_bp_gsea, selected_go_bp_ora))

# Get their ancestors
all_ego_comparison <- sapply(selected_go_bp_comparison, function(x) {GOBPANCESTOR[[x]]})
all_ego_comparison <- unique(c(selected_go_bp_comparison, unlist(all_ego_comparison)))

# Map enrichment results
all_ego_comparison <- all_ego_comparison[! is.na(all_ego_comparison)]

# Prepare nodes
dom_graph <- prep_parents_graph(all_ego_comparison)
nodes <- dom_graph$nodes

# -1 = only GSEA, 0 = both, 1 = only ORA

nodes <- nodes %>% 
  mutate(category = ifelse(id %in% selected_go_bp_gsea, -1, 0) + ifelse(id %in% selected_go_bp_ora, 1, 0)) %>%
  dplyr::select(-color.background) %>%
  left_join(data.frame(category=c(-1, 0, 1), color.background=c("#cd69a7", "#7fbeaf", "#ee9b69")))
# set bg color to white for those simply not significants
nodes[! nodes$id %in% selected_go_bp_comparison, ]$color.background <- "white"

# Plot graph 
plot <- visNetwork(nodes, dom_graph$edges, width="100%", height = 1000,
           main=paste0("Explore GO BP enrichment in GO DAG ontology - GSEA"),) %>%
    visOptions(highlightNearest = list(enabled = TRUE, algorithm = "hierarchical"), selectedBy = "label") %>%
    visPhysics(solver = "hierarchicalRepulsion", hierarchicalRepulsion = list(avoidOverlap = 1)) %>%
    visHierarchicalLayout(direction = "UD") %>%
    visLegend(addEdges = dom_graph$leg_edges)
visSave(plot, "gsea_comp_ora_dag_vizu.html")

Visualize the graph on the exported html document: gsea_comp_ora_dag_vizu.html

While GSEA is much more sensible, there is a significant overlap between the both methods results.

The differences follow the hierarchy.

4 Extend contextualisation with Hetionet and Neo4J

4.1 Find the diseases associated to genes from Hetionet

# build the request
query.1 = paste0("MATCH (d:Disease)-[r2:ASSOCIATES_DaG]->(g:Gene) WHERE g.name IN [",
                 paste0("'", paste0(filtered_data$gene_name, collapse = "' ,'"), "'"),
                 "] RETURN d.identifier, d.name")
# Send the request
con <- neo4j_api$new(url = "https://neo4j.het.io", user = "neo4j", password = "")# 
result.1 <- query.1 %>% call_neo4j(con)

disease.table <- data.frame(disease.name = result.1$d.name$value)
disease.table %>% group_by(disease.name) %>% summarise(n = n()) %>% arrange(desc(n)) %>% DT::datatable()

4.2 Drugs used to treat the diseases

query.2 = paste0("MATCH (c:Compound)-[r1:TREATS_CtD]->(d:Disease)-[r2:ASSOCIATES_DaG]->(g:Gene)  WHERE g.name IN [",
                 paste0("'", paste0(filtered_data$gene_name, collapse = "' ,'"), "'"),
                 "] RETURN c.identifier, c.name")
result.2 <- query.2 %>% call_neo4j(con)

drug.table <- data.frame(drug.name = result.2$c.name$value)
drug.table %>% group_by(drug.name) %>% summarise(n = n()) %>% arrange(desc(n)) %>% DT::datatable()

To visualize the corresponding graph, go send the query and visualize the graph on the Neo4J browzer. But before, replace the return part of the query with : “RETURN c, r1, d, r2, g”

4.3 Drugs that downregulates the genes that are up-regulated in some diseases context

DT::datatable(d.table.1)

4.4 Drugs - that downregulates -> genes (here upregulated) <- Disease up-regualtes gene. But, only on breast cancer at first.

up.regualted <- filtered_data[filtered_data$logFC > 5, ]
query.4.2 = paste0("MATCH (c:Compound)-[r1:DOWNREGULATES_CdG]->(g:Gene)<-[r2:UPREGULATES_DuG]-(d:Disease) WHERE g.name IN [", 
                 paste0("'", paste0(up.regualted$gene_name, collapse = "' ,'"), "'"),
                 "] AND d.name = 'breast cancer' RETURN c.identifier, c.name, g.name, d.identifier, d.name, r1, r2")

result.4.2 <- query.4.2 %>% call_neo4j(con)
d.table.2 <- data.frame(c.name = result.4.2$c.name$value, g.name = result.4.2$g.name$value, d.name = result.4.2$d.name$value, r1 = result.4.2$r1, r2 = result.4.2$r2)
DT::datatable(d.table.2)

See also the details on the relations.

4.5 Creating our own enrichment background set

What are the PharmacologicClass of drugs that targets the differentially expressed genes ?

  • Extract all the available information on the pharmacological class of drugs associated to genes from Hetionet.
  • Convert the data to a TERM2GENE and a TERM2NAME tables.
query.bgset <- "MATCH (p:PharmacologicClass)-[r:INCLUDES_PCiC]->(c:Compound)-[r2]->(g:Gene) RETURN DISTINCT g.name, p.identifier, p.name"
result.bgset <- query.bgset %>% call_neo4j(con)

hetionet.TERM2GENE <- data.frame(TERM = result.bgset$p.identifier$value, GENE = result.bgset$g.name$value)
hetionet.TERM2NAME <- data.frame(TERM = result.bgset$p.identifier$value, NAME = result.bgset$p.name$value) %>% distinct()
  • Compute Enrichment analysis with Hetionet derived knowledge:
e.hetionet <- enricher(gene = DE.set,
                  universe = universe,
                  TERM2GENE = hetionet.TERM2GENE,
                  TERM2NAME = hetionet.TERM2NAME,
                  pAdjustMethod = "BH")
dotplot(e.hetionet, showCategory=20, font.size=20) +
  theme(legend.key.size = unit(2, 'cm'), legend.text = element_text(size=25), legend.title = element_text(size=25))

5 Supplementary materials

5.1 Enrichment with TCGA-WGCNA results

data.WGCNA <- read_csv("./WGCNA_genesInfo_log_mRNA.csv")

5.2 WGCNA GO- Enrichment analysis

modules.wgcna <- unique(data.WGCNA$moduleColor)
universe.wgcna <- unique(data.WGCNA$...1)

out <- data.frame()
ont <- "BP"

for(module in modules.wgcna){
    
    set <- data.WGCNA %>% dplyr::filter(moduleColor == module)
      
      ego.module <- enrichGO(gene = set$geneSymbol,
                  universe = universe.wgcna,
                  OrgDb = HS.annotation,
                  ont = ont,
                  keyType = "SYMBOL",
                  pAdjustMethod = "BH")
      
      sub.out <- ego.module@result
      sub.out["moduleColor"] <- module
      
      out <-  rbind(out, sub.out)
}

reorder_within <- function(x, by, within, fun = mean, sep = "___", ...) {
    new_x <- paste(x, within, sep = sep)
    stats::reorder(new_x, by, FUN = fun)
}

scale_x_reordered <- function(..., sep = "___") {
    reg <- paste0(sep, ".+$")
    ggplot2::scale_x_discrete(labels = function(x) gsub(reg, "", x), ...)
}

cols <- c("black"="black", "blue"="#2448c9", "brown"="#a12f2f", "green"="#2cc937", "grey"="#706c6c", "pink"="#e346a4", "red"="#e0282b", "turquoise"="turquoise", "yellow"="#e0cb28")
# Colors
# Plot
out %>% dplyr::select(ID, Description, qvalue, moduleColor) %>% 
  group_by(moduleColor) %>% 
  slice(1:10) %>% 
  ungroup() %>% 
  ggplot(aes(x = reorder_within(Description, -log10(qvalue), moduleColor), y = -log10(qvalue), fill=moduleColor)) + 
    geom_bar(stat = "identity") + 
    coord_flip() + 
    scale_fill_brewer(palette="Spectral") + 
    theme_classic() + 
    scale_x_reordered() +
    scale_fill_manual(values = cols) +
    theme(axis.text = element_text(size = 8)) +
    facet_wrap(. ~ as.factor(moduleColor), scales="free_y") +
    ggtitle(paste("WGCNA - ", ont))

  • The enrichment is also module-specific

5.3 Vizualising the enrichment results on the DAG

modules.top.GO <- out %>% dplyr::select(ID, GeneRatio, BgRatio, qvalue, moduleColor) %>% 
  group_by(moduleColor) %>% 
  slice(1:10)
GO.modules <- unique(modules.top.GO$ID)

# Get all ancestors of each modules
GO.modules.ancestors <- sapply(GO.modules, function(x) {GOBPANCESTOR[[x]]})
GO.modules.hierarchy <- unique(c(GO.modules, unlist(GO.modules.ancestors)))

# Map enrichment results
GO.modules.hierarchy <- GO.modules.hierarchy[! is.na(GO.modules.hierarchy)]

# Prepare nodes
dom_graph <- prep_parents_graph(GO.modules.hierarchy)
nodes <- dom_graph$nodes

nodes <- nodes %>% 
  left_join((ego@result %>% dplyr::select(ID, GeneRatio, BgRatio, qvalue)), by = c("id"="ID")) %>% 
  mutate(label = paste(label, paste0("GeneRatio=", GeneRatio), paste0("BgRatio=", BgRatio), paste0("qvalue=", signif(qvalue, 3)), sep = "\n")) %>% 
  dplyr::select(-c(GeneRatio, qvalue)) %>%
  left_join( (modules.top.GO %>% dplyr::select(ID, moduleColor)), by = c("id"="ID")) %>%
  mutate(color.background = moduleColor) %>%
  replace_na(list(color.background = "white")) 
nodes[nodes$color.background == "black", ]$font.color <- "white"

# Plot graph 
plot <- visNetwork(nodes, dom_graph$edges, width="100%", height = 1000,
           main=paste0("Explore GO BP enrichment in GO DAG ontology"),) %>%
    visOptions(highlightNearest = list(enabled = TRUE, algorithm = "hierarchical"), selectedBy = "label") %>%
    visPhysics(solver = "hierarchicalRepulsion", hierarchicalRepulsion = list(avoidOverlap = 1)) %>%
    visHierarchicalLayout(direction = "UD", blockShifting=FALSE, nodeSpacing=200) %>%
    visLegend(addEdges = dom_graph$leg_edges)
visSave(plot, "WGCNA_dag_vizu.html")

Visualize the graph on the exported html document: WGCNA_dag_vizu.html

  • The enrichment also cluster on the DAG graph.

5.4 Requests Hetionet to get the relations between genes in a same module

query.module = paste0("MATCH (g:Gene)-[r]->(g2:Gene) WHERE g.name IN [", 
                 paste0("'", paste0(data.WGCNA[data.WGCNA$moduleColor == "black", ]$geneSymbol, collapse = "' ,'"), "'"),
                 "] AND g2.name IN [",
                 paste0("'", paste0(data.WGCNA[data.WGCNA$moduleColor == "black", ]$geneSymbol, collapse = "' ,'"), "'"),
                  "] RETURN g, r, g2")
  • To visualize the corresponding graph, go send the query and visualize the graph on the Neo4J browzer.

5.6 Hypothesis discovery - Raynaud’s Disease

In this requests, we extracted:

  • Compounds related to the Raynaud’s Disease (mesh:D011928)
  • MeSH descriptors significantly related to these compounds, by selecting those that are related to therapeutic actions: Cardiovascular Agents or Hematologic Agents.
  • We then retrieve other compounds related to these MeSH descriptors
  • We also specify that these new compounds must :
    • be related to fish oils (mesh:D005395)
    • belong to the chemical class of Fatty Acyls (chemont:0003909).
    • not be already related to Raynaud’s Disease in our KG.

Therefore, these Fatty Acyls compounds associated with fish oils are related to the same therapeutic effects (Cardiovascular Agents or Hematologic Agents) as some compounds used as treatment for Raynaud’s Disease. Here we retrieve for instance Eicosapentaenoic acid (EPA), which indeed have the same therapeutic effect (Platelet Aggregation Inhibitors) as PGE1 or PGI2 which are used to treat Raynaud’s disease.

See more in the reference article.

DEFINE input:inference "schema-inference-rules"

select distinct (strafter(STR(?other_compound),"http://rdf.ncbi.nlm.nih.gov/pubchem/compound/CID")
as ?CID)
from <https://forum.semantic-metabolomics.org/ClassyFire/direct-parent/2020>
from <https://forum.semantic-metabolomics.org/EnrichmentAnalysis/CID_MESH/2021>
from <https://forum.semantic-metabolomics.org/ChemOnt/2016-08-27>
from <https://forum.semantic-metabolomics.org/MeSHRDF/2022-01-04>
where
{
{
select ?other_compound
where
{
mesh:D011928 skos:related ?RD_c .
?RD_c skos:related ?mesh_TU .
?mesh_TU (meshv:treeNumber|meshv:treeNumber/meshv:parentTreeNumber+) ?tn .
?mesh_selected meshv:treeNumber ?tn .
VALUES ?mesh_selected { mesh:D002317 mesh:D006401 }
?other_compound skos:related ?mesh_TU .
?other_compound skos:related mesh:D005395 .
?other_compound a chemont:0003909 .
}
}
FILTER NOT EXISTS {?other_compound skos:related mesh:D011928}
}

5.7 Identifiers mapping on wikidata

SELECT ?gene ?ensembl_geme_id ?entrez_id ?civic_id ?hgnc_id ?OMID_id ?mesh_id WHERE {  
  ?gene wdt:P31 wd:Q7187 ;
        wdt:P703 wd:Q15978631 .
 
  OPTIONAL { ?gene wdt:P594 ?ensembl_geme_id . }
  OPTIONAL { ?gene wdt:P351 ?entrez_id . }
  OPTIONAL { ?gene wdt:P11277 ?civic_id . }
  OPTIONAL { ?gene wdt:P354 ?hgnc_id . }
  OPTIONAL { ?gene wdt:P492 ?OMID_id . }
  OPTIONAL { ?gene wdt:P486 ?mesh_id . }
 
  }
LIMIT 1000