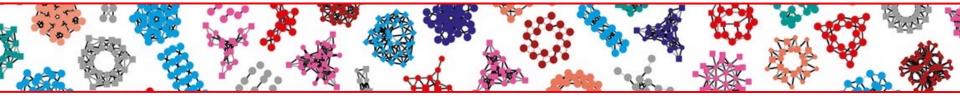
Identifiers, cross-references and graphs


Swiss Institute of Bioinformatics

SIB

- MetaNetX
- Diffusion on graphs

Summer School in Aussois ^{6th} of September 2023 Marco Pagni

Database structures

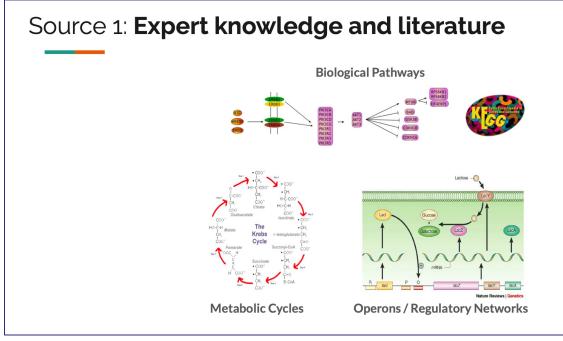
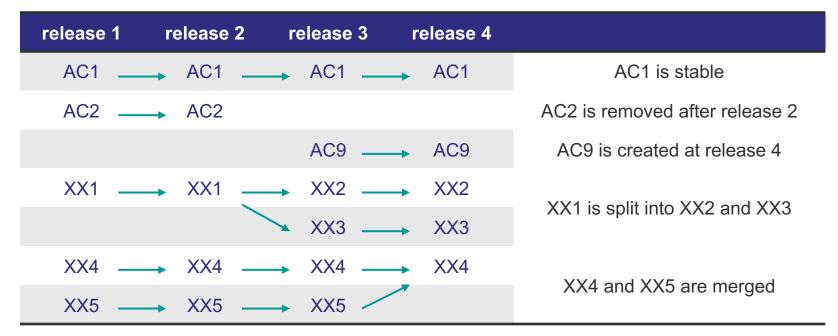


figure from Galadriel Briere presentation on Tuesday

A look back in time

- Database best practices have not really changed over the last 25 years
- User interfaces have dramatically improved
- ID 1433B BOVIN 246 AA. Reviewed; AC P68250; P29358; Q0VCL1; DT 25-OCT-2004, integrated into UniProtKB/Swiss-Prot. דת 23-JAN-2007, sequence version 2. DT 22-FEB-2023, entry version 124. DE RecName: Full=14-3-3 protein beta/alpha; AltName: Full=Protein kinase C inhibitor protein 1; DE DE Short=KCIP-1; DE Contains: DE RecName: Full=14-3-3 protein beta/alpha, N-terminally processed; GN Name=YWHAB; os Bos taurus (Bovine). OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; OC Eutheria; Laurasiatheria; Artiodactyla; Ruminantia; Pecora; Bovidae; OC Bovinae; Bos. OX NCBI_TaxID=9913; RN [1] RP NUCLEOTIDE SEQUENCE [LARGE SCALE MRNA] (ISOFORM LONG). RC STRAIN=Hereford; TISSUE=Fetal pons; RG NIH - Mammalian Gene Collection (MGC) project; RL Submitted (AUG-2006) to the EMBL/GenBank/DDBJ databases. RN [2] RP PROTEIN SEQUENCE OF 2-246. RX PubMed=1671102; DOI=10.1016/0022-2836(91)90616-e; RA Isobe T., Ichimura T., Sunaya T., Okuyama T., Takahashi N., Kuwano R., RA Takahashi Y.; "Distinct forms of the protein kinase-dependent activator of tyrosine and RT tryptophan hydroxylases."; RТ RL J. Mol. Biol. 217:125-132(1991). RN [3] RP NUCLEOTIDE SEQUENCE [MRNA] (ISOFORM SHORT). RA Jones J.M., Niikura T., Pinke R.M., Guo W., Molday L., Leykam J., RA McConnell D.G.; RT "Expression of 14-3-3 proteins in bovine retinal photoreceptors."; RT. Submitted (JAN-1998) to the EMBL/GenBank/DDBJ databases. RN [4] FUNCTION. RP RX PubMed=7931346; DOI=10.1046/j.1471-4159.1994.63051908.x; Tanji M., Horwitz R., Rosenfeld G., Waymire J.C.; RA RT "Activation of protein kinase C by purified bovine brain 14-3-3: comparison with tyrosine hydroxylase activation."; RT RL J. Neurochem. 63:1908-1916(1994). CC -!- FUNCTION: Adapter protein implicated in the regulation of a large CC spectrum of both general and specialized signaling pathways. Binds to a CC large number of partners, usually by recognition of a phosphoserine or CC phosphothreonine motif. Binding generally results in the modulation of CC the activity of the binding partner. Negative regulator of CC osteogenesis. Blocks the nuclear translocation of the phosphorylated CC form (by AKT1) of SRPK2 and antagonizes its stimulatory effect on CC cyclin D1 expression resulting in blockage of neuronal apoptosis CC elicited by SRPK2. Negative regulator of signaling cascades that CC mediate activation of MAP kinases via AKAP13. CC {ECO:0000250|UniProtKB:P31946, ECO:0000269|PubMed:7931346}.


Database entry life cycle

An accession number:

- uniquely identify an "entry" across releases
- is a string, not a number
- is opaque
- is meant to be stable across releases
- must never be recycled

An entry:

- contains a core of information, secondary information and cross-references
- hopefully improves across releases
- typically contains more false negatives than false positives

→ forms a directed acyclic graph (DAG)

Mnemonic identifier

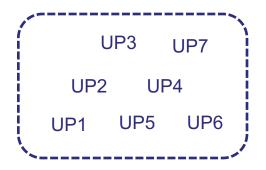
A mnemonic identifier:

- is meant to facilitate human life
- should not be used as a stable reference
- is not necessarily propagated across releases

- mnemonic
- primary accession number
- secondary (deprecated) accession numbers

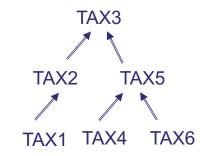
1433B BOVIN Reviewed; 246 AA. AC P68250; P29358; Q0VCL1; 25-OCT-2004, integrated into UniProtKB/Swiss-Prot. 23-JAN-2007, sequence version 2. 22-FEB-2023, entry version 124. RecName: Full=14-3-3 protein beta/alpha; DE DE AltName: Full=Protein kinase C inhibitor protein 1; DE Short=KCIP-1; Contains: DF RecName: Full=14-3-3 protein beta/alpha, N-terminally DE processed.

Some resources have no mnemonic identifier. In ChEBI is found an accession number and a molecule name


Some resources do not distinguish accession number and mnemonic identifier. For example, this is found in some metabolic models

Gene names are rather on the "mnemonic side". ENSEMBL identifiers are accession number linked to a particular genome assembly.

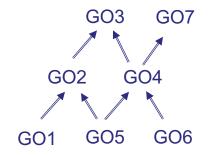
Recommendations: work with mnemonic identifiers when available because they are more informative, but always keep track of the accession numbers.


The overall database structure may consist in a set of independent entries. For example

- UniProt
- EMBL

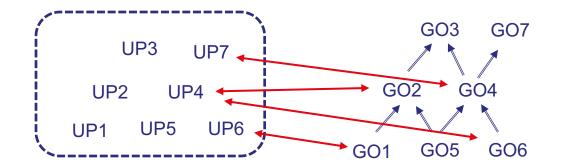
In a tree structure, every entry (node) has zero or one parent entry.

- The NCBI taxonomy is a single huge tree
- Medical Subject Headings (MeSH) are made of 16 trees.



entry	parent
TAX1	TAX2
TAX2	TAX3
TAX3	
TAX4	TAX5
TAX5	TAX3
TAX6	TAX5

In a directed acyclic graph (DAG) every entry (node) has zero, one or multiple parent entries.


This can be referred to as an ontology, when the properties attributed to parents are inherited by their children

- GENE Ontology (GO)
- ChEBI ontology

entry	parent
GO1	GO2
GO2	GO3
GO3	
GO4	GO3, GO7
GO5	GO4
GO6	GO4
GO7	

About GO and GOA

The pre-release of the GO annotations for Coronavirus SARS-CoV-2 is available from the GOA FTP ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/pre_release/

Gene Ontology Annotation (GOA) Database

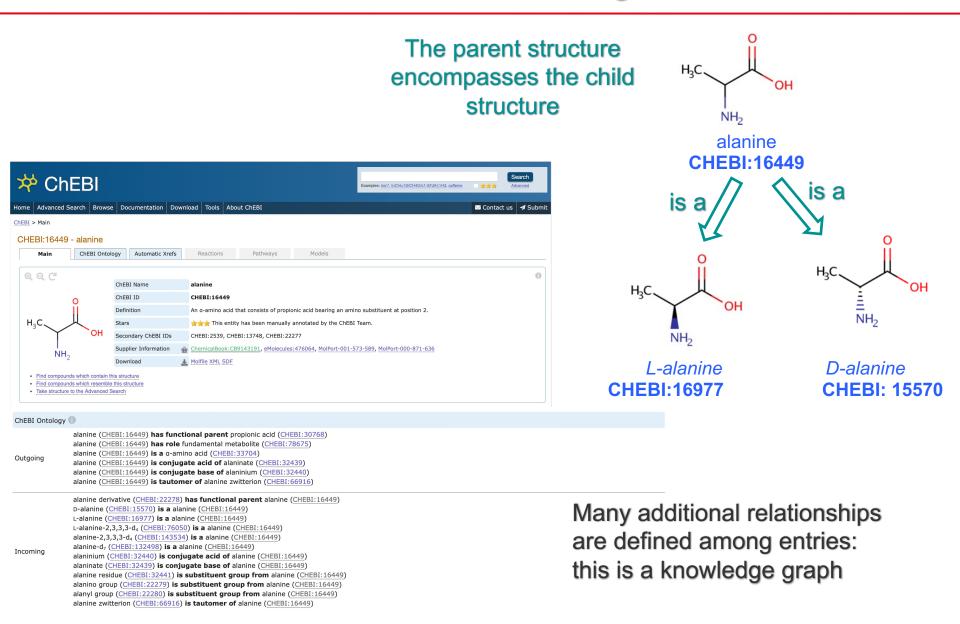
The GO annotation program aims to provide high-quality Gene Ontology (GO) annotations to proteins in the UniProt Knowledgebase (UniProtKB), RNA molecules from <u>RNACentral</u> and protein complexes from the Complex Portal. To search and view Gene Ontology terms and annotations, please use our QuickGO browser.

GOA files contain a mixture of manual annotation supplied by members of the <u>Gene Onotology</u> <u>Consortium</u> and computationally assigned GO terms describing gene products. Annotation type is clearly indicated by associated evidence codes and there are links to the source data.

Release cycle

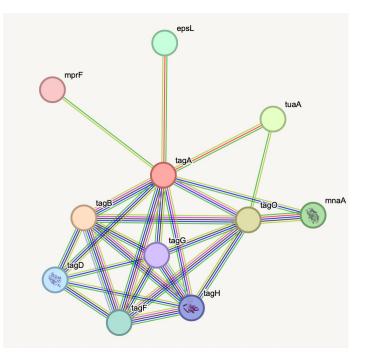
All GOA files are released approximately every four weeks and can be accessed from our <u>Downloads</u> page. We aim to coordinate our release with releases of UniProtKB.

Latest statistics


UniProt >	Human >
Mouse >	Rat >
Arabidopsis >	Zebrafish >
Chicken >	Cow >
Dicty >	Dog >
Pig >	Fly >
Worm >	Yeast >
Proteomes >	

The GOA relationships between UniProt and GO are most often many-tomany

They are readily available for model organisms


They can be computed for non-model organisms, using InterProScan for example. The resulting annotations are often too general to lead to interesting enrichment results.

ChEBI: Chemical Entities of Biological Interest

Database structure

STRINGdb is primarily an undirected graph with different types of relationships (different supporting evidences) among entries

Notations for external identifiers

The most commonly used compact notation nowadays is

prefix:accession-number

In the RDF world using Turtle syntax, given

PREFIX up: <http://purl.uniprot.org/uniprot/>

the identifier in short form

up:P29358

refers exactly to the same entity as the identifier in long form

<http://purl.uniprot.org/uniprot/P29358>

In RDF, the prefix definition is local, not public. Hence the stable public identifier is the long form.

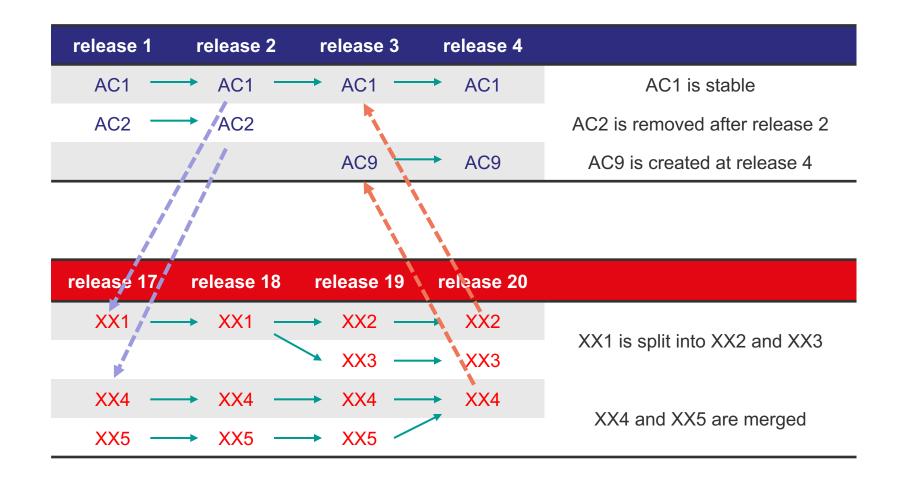
Utilisation of prefixes is well codified in the RDF world. Less elsewhere!

identifiers.org is attempting to promote universal public prefixes. Unfortunately they have created new long forms, ignoring widely-used previous ones. This has introduced unnecessary communication difficulties between the Systems Biology and Bioinformatics communities.

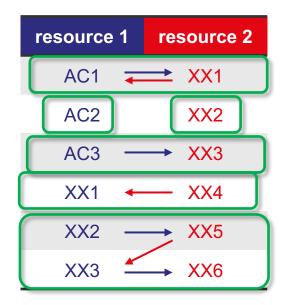
Nota Bene: some identifiers were originally defined with a ":" as part of the accession numbers. In practice:

CHEBI:16977, chebi:CHEBI:16977 and chebi:CHEBI_16977 are very likely to refer to the same entry in ChEBI

What does a cross reference means?

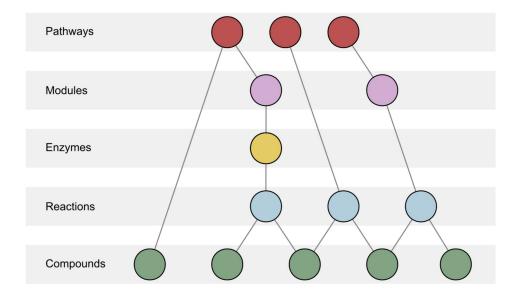

- Different identifiers for exactly the same entity
- Different identifiers for closely-related object, *e.g. in* two database of protein, one with the focus on protein structures, the other one on protein sequences
- Different identifiers for distinct but related object
 - gene ⇔ protein

A cross reference links an entry in a database to another entry in another database, *i.e.* using an external accession number

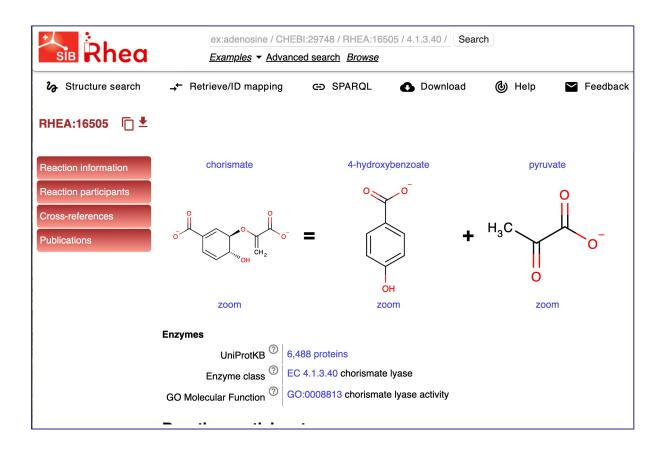

```
DR
     EMBL; BC120112; AAI20113.1; -; mRNA.
DR
     EMBL; AF043736; AAC02090.1; -; mRNA.
DR
     PIR; S13467; S13467.
DR
     RefSeq; NP 777219.2; NM 174794.2.
     AlphaFoldDB; P68250; -.
DR
     SMR; P68250; -.
DR
     STRING; 9913.ENSBTAP00000022411; -.
DR
DR
     iPTMnet; P68250; -.
     PaxDb; P68250; -.
DR
     PeptideAtlas; P68250; -.
DR
     GeneID; 286863; -.
DR
DR
     KEGG; bta:286863; -.
     GO; GO:0005737; C:cytoplasm; ISS:AgBase.
DR
     GO; GO:0042470; C:melanosome; IEA:UniProtKB-SubCell.
DR
     GO; GO:0048471; C:perinuclear region of cytoplasm; ISS:AgBase.
DR
     GO; GO:0019904; F:protein domain specific binding; ISS:AgBase.
DR
DR
     InterPro; IPR000308; 14-3-3.
DR
     InterPro; IPR023409; 14-3-3 CS.
DR
     InterPro; IPR036815; 14-3-3 dom sf.
DR
     InterPro; IPR023410; 14-3-3 domain.
     PANTHER; PTHR18860; 14-3-3 PROTEIN; 1.
DR
DR
     PANTHER; PTHR18860:SF28; 14-3-3 PROTEIN BETA/ALPHA; 1.
```

Cross references across releases

For practical reason, cross-references usually refer to entries in previous release of the external databases !

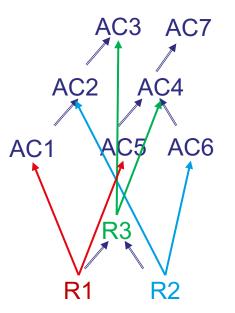

Cross references

Computation of connected component helps to understand structure of cross references (available from igraph) KEGG is a DAG with a fixed depth.

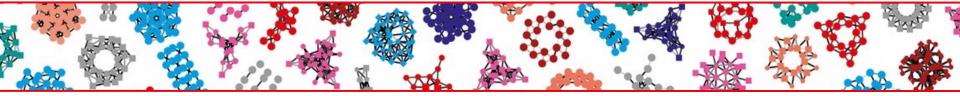

It can also be viewed as a multipartite graph. Individual entries are assigned a type (compound, reaction ...) and relations are only considered between entries of different types.

The complete description of a biochemical pathways down to the metabolite level is the induced sub-graph starting from the pathway identifier.

RHEA


A database of biochemical reaction meant to annotate enzymes in UniProt

RHEA


RHEA is an ontology (a DAG) of biochemical reactions with reactants taken from the ChEBI ontology (another DAG)

R1: AC1 ⇔ AC5 R2: AC2 ⇔ AC6 R3: AC3 ⇔ AC4

Reasoning with ontologies:

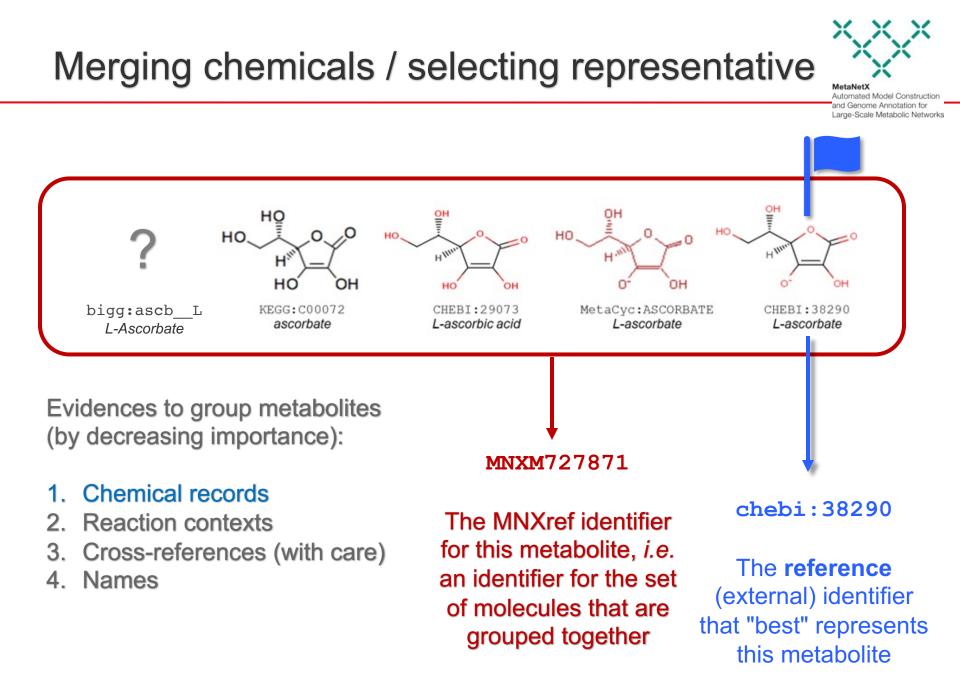
- 1. AC1 \Leftrightarrow AC6 is implied by R3
- 2. reaction R1 is a child of R2

Adding molecular structures to stoichiometric models:

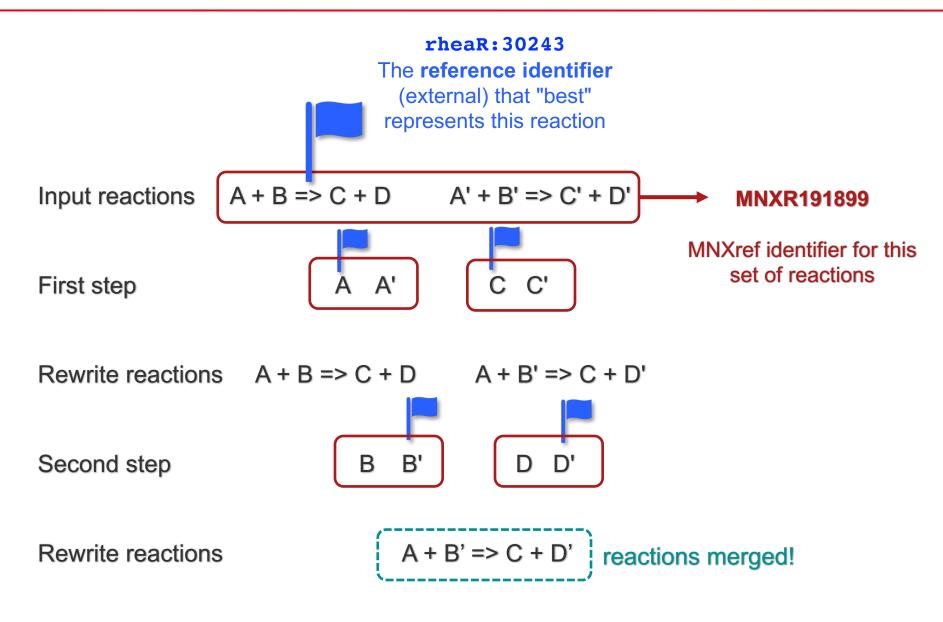
...where Systems Biology and Chemoinformatics meet

An old problem

Genome-scale metabolic network (GSMN)


Assign chemical structures to model variables (metabolites and reactions)

Biochemical databases



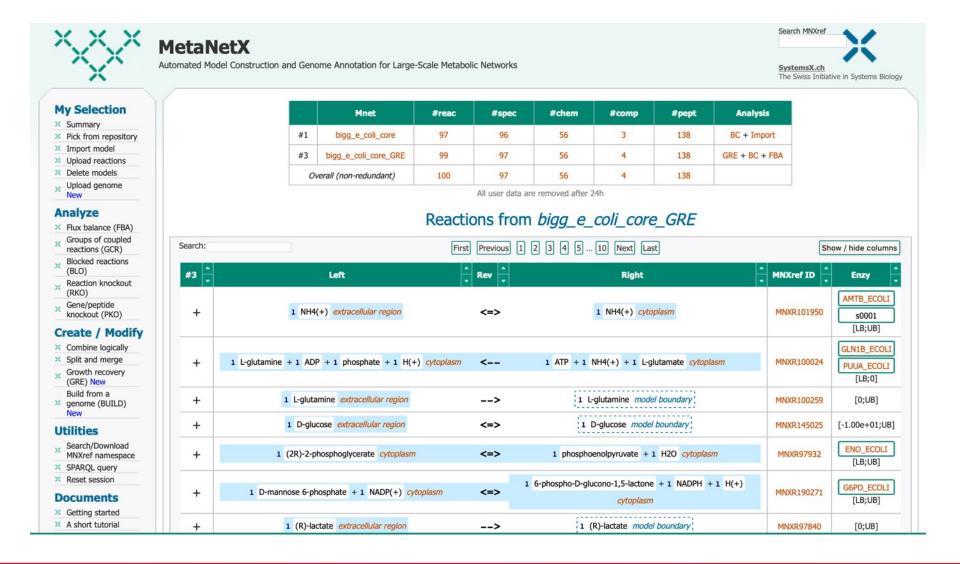
Preserve model properties (simulations, predictions)

Merging chemicals => merging reactions

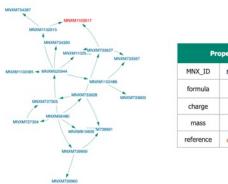
MNXref reconciliation in number (release 4.2)

		all	in reac	in mnet*
	CHEBI	116222	21196	5637
	bigg	9130	9053	6541
	envipath	12306	1580	591
S	hmdb	195008	9369	4500
bolites	keggC	18673	9899	2757
il	keggD	11147	650	250
8	keggE	864	0	0
at	keggG	11042	406	115
metal	lipidmaps	43085	2832	929
e	metacyc	20296	16199	2505
Ľ	reactome	5526	2031	1638
	sabiork	8944	8899	1443
	seed	33995	21634	3789
	slm	777657	1831	524
	MNXref	1043605	41584	9359
	ratio	2.15	3.62	5.16

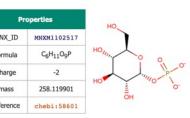
*approx. 150 public GEMs from different labs and different organisms



MetaNetX Automated Model Construction and Genome Annotation for Large-Scale Metabolic Networks


		all	in mnet
S	bigg	28167	40653
Ċ	kegg	11160	2879
0	metacyc	17198	3262
Gi	rhea	12510	3101
ag	sabiork	8118	1818
ĕ	seed	43855	15958
Ľ	MNXref	36944	13317
	ratio	4.63	6.38

The full dataset is distributed in TAB-delimited and RDF/Turtle formats under CC-BY license


Navigating MNXref at www.metanetx.org

Navigating MNXref at www.metanetx.org

alpha-D-glucose 1-phosphate

InChIKey	HXXFSFRBOHSIMQ-VFUOTHLCSA-L
InChI	InChI=1S/C6H13O9P/c7-1-2-3(8)4(9)5(10)6(14-2)15-16(11,12)13/h2-10H,1H2,(H2,11,12,13)/p-2/t2-,3-,4+,5-,6-/m1/s1
SMILES	OC[C@H]10[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@@H]10

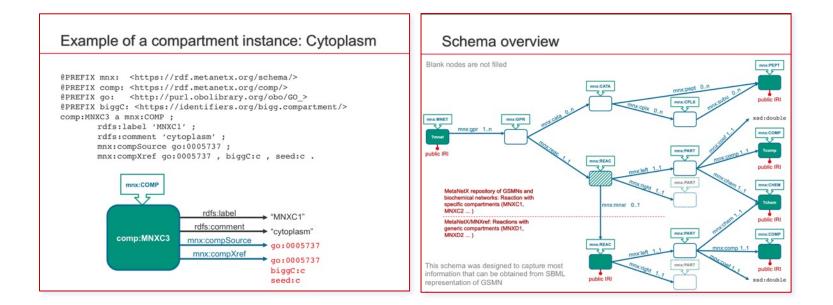
Occurences in reactions

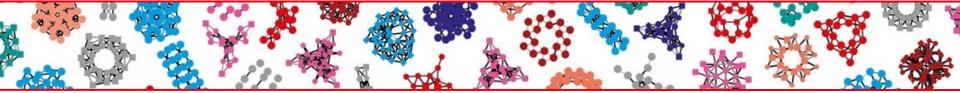
	#reac
Distinct reactions in my sandbox	0
Distinct generic reactions in MNXref	139
Distinct compatimentalized reactions in models	25

Similar chemical compounds in external resources

Identifier	Description
chebi:58601 CHEBI:58601	alpha-D-glucose 1-phosphate alpha-D-glucopyranose 1-phosphate alpha-D-glucose 1-phosphate(2-)
<pre>biggM:gallp bigg.metabolite:gallp</pre>	Alpha-D-Galactose 1-phosphate
keggC:C00103 kegg.compound:C00103	D-Glucose 1-phosphate Cori ester D-Glucose alpha-1-phosphate alpha-D-Glucose 1-phosphate
<pre>seedM:cpd00089 seed.compound:cpd00089</pre>	Glucose-1-phosphate Cori ester D-Glucose 1-phosphate D-Glucose 1-phosphate D-glucose 1-phosphate D-glucose 1-phosphate D-glucose-1-phosphate alpha-D-Glucose 1-phosphate alpha-D-Glucose 1-phosphate alpha-D-glucose-1-phosphate alpha-D-glucose-1-phosphate alpha-D-glucose-1-Phosphate glapa-glucose-1-Phosphate cori ester g1p glucose-1-phosphate glucose-1-phosphate
<pre>sabiorkM:1298 sabiork.compound:1298</pre>	alpha-D-Glucose 1-phosphate D-Glucose alpha-1-phosphate alpha-D-Glucose-1-phosphate
<pre>metacycM:GLC-1-P metacyc.compound:GLC-1-P</pre>	alpha-D-glucopyranose 1-phosphate D-glucose 1-phosphate D-glucose-1-phosphate Jpha-D-glucose 1-phosphate alpha-D-glucose-1-Phosphate alpha-D-glucose-1-P alpha-glucose-1-P glucose-1-phosphate cori ester glucose 1-phosphate glucose-1P

Diagnose metabolic networks


	Mnet	#reac	#spec	#chem	#comp	#pept	Analysis
#1	metatlas_HumanGEM	12888	9934	4054	10	3616	BC + Import
Ov	erall (non-redundant)	12888	9934	4054	10	3616	


- ambiguous and conflicting mapping to MNXref
- duplicated reactions
- metabolites with isomeric parent/child relationships

source ID	mapped chem	MNXref ID	Comment	
MAM02839c;MAM02839r;MAM02839s	3,3',5'-triiodothyronine	MNXM1102092	Ambiguous xrefs, parent MNXM1102092 selected: chebi:28774 => MNXM1102092 kegg:C07639 => MNXM110209	
MAM00078p	pristanoyl-CoA	MNXM1103831	Ambiguous xrefs, parent MNXM1103831 selected: bigg:pristcoa => MNXM1103831; chebi:64039 => MNXM733833	
MAM03887c;MAM03887p	pristanoyl-CoA	MNXM1103831	Ambiguous xrefs, parent MNXM1103831 selected: bigg:pristcoa => MNXM1103831; chebi:64039 => MNXM733833	
MAM00749m;MAM00749p	3alpha,7alpha,12alpha trihydroxy-5beta- cholest-24-en-26-oyl- CoAMNXM11039433alpha,7alpha- dihydroxy-5beta- cholestan-26-oyl-CoAMNXM1104095		Ambiguous xrefs, parent MNXM1103943 selected: bigg:cholcoads,chebi:27505 => MNXM1103943; kegg:C05460 => MNXM2747 Ambiguous xrefs, parent MNXM1104095 selected: bigg:dhcholestancoa,chebi:1549 => MNXM104095; kegg:C04664 => MNXM730494	
MAM00614c;MAM00614m;MAM00614p;MAM00614r				
MAM00614c	3alpha,7alpha- dihydroxy-5beta- cholestan-26-oyl-CoA	MNXM1104095	Isomeric parent/child relationsh found in mnet	
MAM00617p	(25S)-3alpha,7alpha- Dihydroxy-5beta- cholestanoyl-CoA	MINAM/3/660		
MAM00614m	3alpha,7alpha- dihydroxy-5beta- cholestan-26-oyl-CoA	MNXM1104095	Isomeric parent/child relationship	
MAM00617p	(25S)-3alpha,7alpha- Dihydroxy-5beta-	MNXM737886	found in mnet	

RDF/Turtle distribution and SPARQL endpoint

https://rdf.metanetx.org

Graph diffusion

R packages from Bioconductor:

- FELLA
- diffuStats

Picart-Armada et al. BMC Bioinformatics (2018) 19:538 https://doi.org/10.1186/s12859-018-2487-5

BMC Bioinformatics

Open Access

CrossMark

SOFTWARE

FELLA: an R package to enrich metabolomics data

Sergio Picart-Armada^{1,2,3*} ⁽⁶⁾, Francesc Fernández-Albert^{1,2,6}, Maria Vinaixa^{4,5}, Oscar Yanes^{4,5} and Alexandre Perera-Lluna^{1,2,3}

Abstract

Background: Pathway enrichment techniques are useful for understanding experimental metabolomics data. Their purpose is to give context to the affected metabolites in terms of the prior knowledge contained in metabolic pathways. However, the interpretation of a prioritized pathway list is still challenging, as pathways show overlap and cross talk effects.

Results: We introduce FELLA, an R package to perform a network-based enrichment of a list of affected metabolites. FELLA builds a hierarchical representation of an organism biochemistry from the Kyoto Encyclopedia of Genes and Genomes (REGG), containing pathways, modules, enzymes, reactions and metabolites. In addition to providing a list of pathways, FELLA reports intermediate entities (modules, enzymes, reactions) that link the input metabolites to them. This sheds light on pathway cross talk and potential enzymes or metabolites as targets for the condition under study. FELLA has been applied to six public datasets –three from *Homo sapiens*, two from *Danio rerio* and one from *Mus musculus*– and has reproduced findings from the original studies and from independent literature.

Conclusions: The R package FELLA offers an innovative enrichment concept starting from a list of metabolites, based on a knowledge graph representation of the KEGG database that focuses on interpretability. Besides reporting a list of pathways, FELLA suggests intermediate entities that are of interest prese. Its usefulness has been shown at several molecular levels on six public datasets, including human and animal models. The user can run the enrichment analysis through a simple interactive graphical interface or programmatically. FELLA is publicly available in Bioconductor under the GPL-3 license.

Keywords: Metabolomics, Pathways, Network analysis, Data mining, Knowledge representation

Bioinformatics, 34(3), 2018, 533–534 doi: 10.1093/bioinformatics/btx632 Advance Access Publication Date: 5 October 2017 Applications Note

OXFORD

OXF

Data and text mining

diffuStats: an R package to compute diffusionbased scores on biological networks

Sergio Picart-Armada^{1,2,*}, Wesley K. Thompson^{3,4}, Alfonso Buil³ and Alexandre Perera-Lluna^{1,2}

¹B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, CIBER-BBN, Barcelona 08028, Spain, ²Department of Biomedical Engineering, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona 08950, Spain, ³Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde 4000, Denmark and ⁴Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA

*To whom correspondence should be addressed. Associate Editor: Jonathan Wren

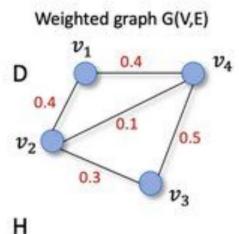
Received on June 6, 2017; revised on September 28, 2017; editorial decision on October 1, 2017; accepted on October 4, 2017

doi: 10.1093/bioinformatics/btaa896 Advance Access Publication Date: 18 October 2020 Original Paper

Data and text mining

The effect of statistical normalization on network propagation scores

Sergio Picart-Armada (1,2,*, Wesley K. Thompson^{3,4}, Alfonso Buil³ and Alexandre Perera-Lluna^{1,2}

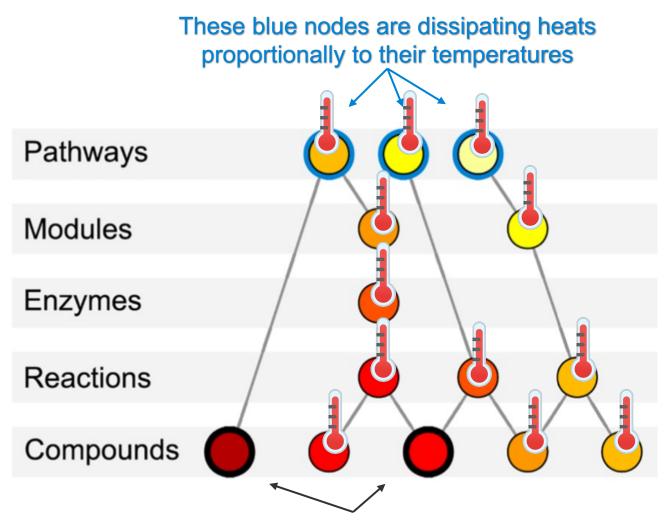

¹B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, BBN, Barcelona, 08028, Spain, ²Esplugues de Llobregat, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, Barcelona Spain, ³Mental Health Center Sct. Hans, 4000 Roskilde, Denmark and ⁴Department of Family Medicine and Public Health, Unive California, San Diego, La Jolla, CA, USA

*To whom correspondence should be addressed Associate Editor: Jonathan Wren Received on January 21, 2020; revised on September 18, 2020; editorial decision on October 1, 2020; accepted on October 7, 2020

Heat diffusion on a network

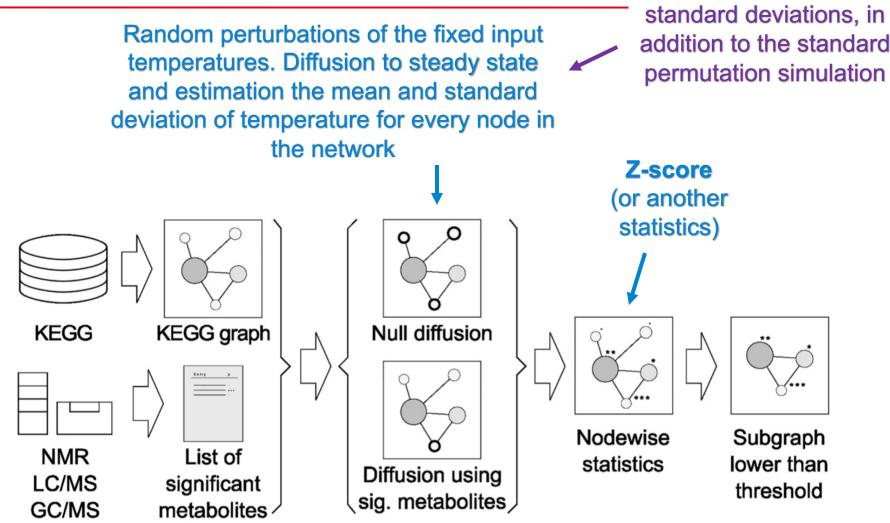
- *v_i* temperature of node *i*
- *H_{i,j}* thermal conductivity of edge *i* to *j* (adjacency matrix)
- I_i loss constant for node *i*

$$\frac{dv_i}{dt} = H_{i,j}(v_j - v_i) - l_i v_i$$



	v_1	v_2	v_3	v_4
v_1	0	0.4	0	0.4
v_2	0.4	0	0.3	0.1
v_3	0	0.3	0	0.5
v_4	0.4	0.1	0.5	0

More about the mathematics of diffusion on a graph, including the definition of Laplacian at


https://www.math.fsu.edu/~bertram/lectures/Diffusion.pdf

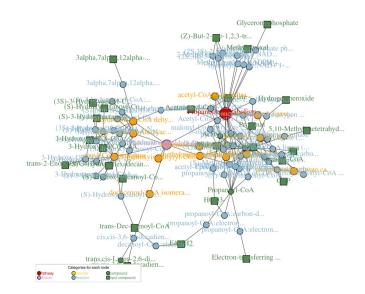
FELLA principle

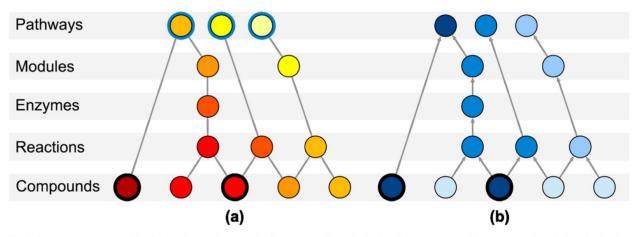
These black nodes belong to the observed metabolite universe . They are given a fixed temperature. For example, the metabolite that belong to a particular WGCNA module are given a temperature to 1° and all the others are set to 0°

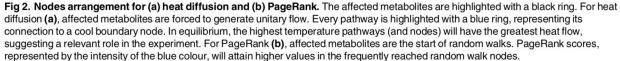
Diffusion statistics principle

FELLA / DiffusStats

comes with a fast method


to compute means and


Fig 1. Workflow summary. Contextual knowledge is extracted from KEGG as a graph object while experimental data is introduced as a list of affected metabolites. A null diffusive model assesses, and reports in a subgraph, which part of the KEGG graph is relevant for the input metabolites.


https://doi.org/10.1371/journal.pone.0189012.g001

What FELLA results looks like?

KEGG.id	Entry.type	KEGG.name	p.score
hsa00640	pathway	Propanoate metabolism - Homo sapiens (human)	0.0036894
M00013	module	Malonate semialdehyde pathway, propanoyl-CoA	0.0044683
1.1.1.211	enzyme	long-chain-3-hydroxyacyl-CoA dehydrogenase	0.0371099
1.1.1.35	enzyme	3-hydroxyacyl-CoA dehydrogenase	0.0392511
1.2.1.18	enzyme	malonate-semialdehyde dehydrogenase (acetylat	0.0069255
1.2.1.27	enzyme	methylmalonate-semialdehyde dehydrogenase (Co	0.0165439
2.3.1.9	enzyme	acetyl-CoA C-acetyltransferase	0.0085923
3.1.2.4	enzyme	3-hydroxyisobutyryl-CoA hydrolase	0.0786804
4.1.1.32	enzyme	phosphoenolpyruvate carboxykinase (GTP)	0.0700429
4.1.1.41	enzyme	(S)-methylmalonyl-CoA decarboxylase	0.0223899
4.1.1.9	enzyme	malonyl-CoA decarboxylase	0.0002538
4.2.1.17	enzyme	enoyl-CoA hydratase	0.0015731
5.3.3.8	enzyme	dodecenoyl-CoA isomerase	0.0164255
6.2.1.4	enzyme	succinate—CoA ligase (GDP-forming)	0.0019142
6.2.1.5	enzyme	succinate—CoA ligase (ADP-forming)	0.0125330
R00209	reaction	pyruvate:NAD+ 2-oxidoreductase (CoA-acetylati	0.0885938
R00233	reaction	malonyl-CoA carboxy-lyase (acetyl-CoA-forming	0.0000698
R00238	reaction	Acetyl-CoA:acetyl-CoA C-acetyltransferase	0.0001037
R00353	reaction	malonyl-CoA:pyruvate carboxytransferase	0.0065794
R00405	reaction	Succinate:CoA ligase (ADP-forming)	0.0468613

https://doi.org/10.1371/journal.pone.0189012.g002

Fig 3. Toy example of an over-representation analysis of a hypothetical "pathway A" containing 3 metabolites out of a total of 10. The list to be enriched contains 4 metabolites, showing 2 hits in the pathway. The corresponding (Fisher's exact test) over-representation can be understood as a diffusion process on the depicted network followed by a null model. The temperature of pathway A is always coincident with the number of hits in the pathway, implying that its null distribution is the hypergeometric distribution, to which a one-tailed temperature comparison is made.

https://doi.org/10.1371/journal.pone.0189012.g003

Diffusion statistics advantages:

- works on (weighted) undirected network of any topology
- scales easily up to 20'000 nodes and any number of edges
- diffuStats implementation of Z-score computation run fast with a single set of observations

Limitations:

- only one type of edge
- no directionality or logical constraint can be expressed
- multiple sets of observations can possibly be investigated with the much slower monte-Carlo algorithm (I have not yet tested it)