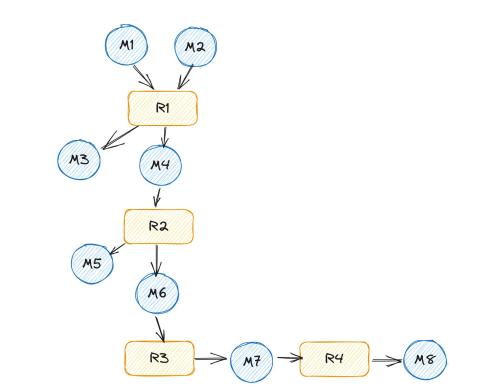
Omics data analysis in genome scale metabolic networks

Summer school Multi-omics - Aussois Jean-Clément Gallardo 07 / 09 / 2023

Collaborators:

- Ludovic Cottret

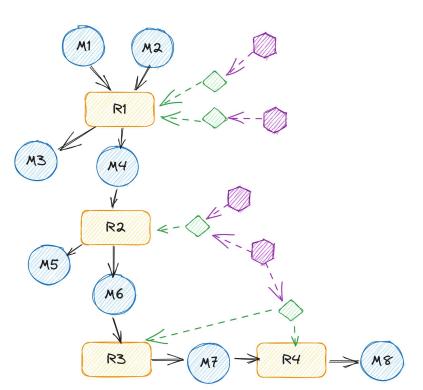
- Clément Frainay
- Fabien Jourdan
- Nathalie Poupin
- Florence Vinson



Metabolic networks

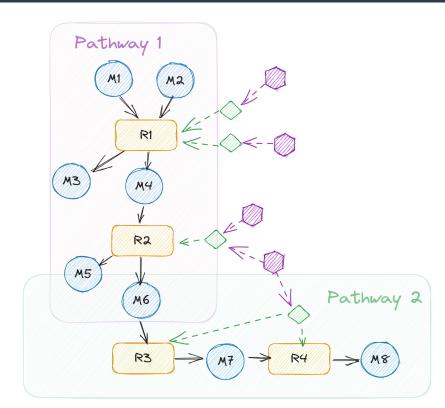
A definition of a metabolic network

A metabolic network is:


• a set of biochemical reactions linked together by the metabolites that they consume and produce

A definition of a metabolic network

A metabolic network is:


- a set of biochemical reactions linked together by the metabolites that they consume and produce
- the set of the genes that code for the enzymes that catalyse the reactions

A definition of a metabolic network

A metabolic network is:

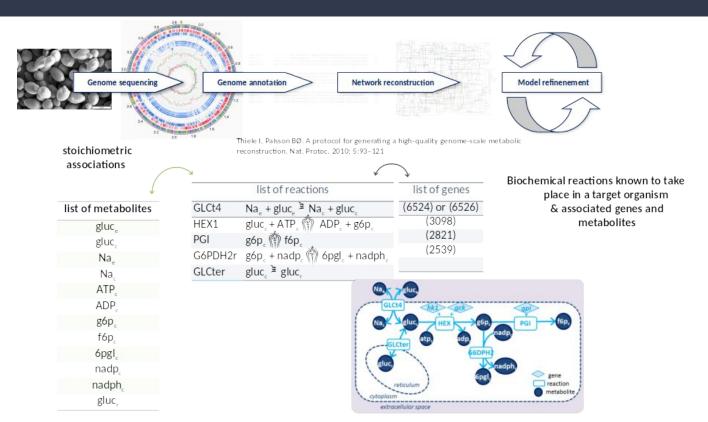
- a set of biochemical reactions linked together by the metabolites that they consume and produce
- the set of the genes that code for the enzymes that catalyse the reactions
- the set of pathways where the reactions are involved

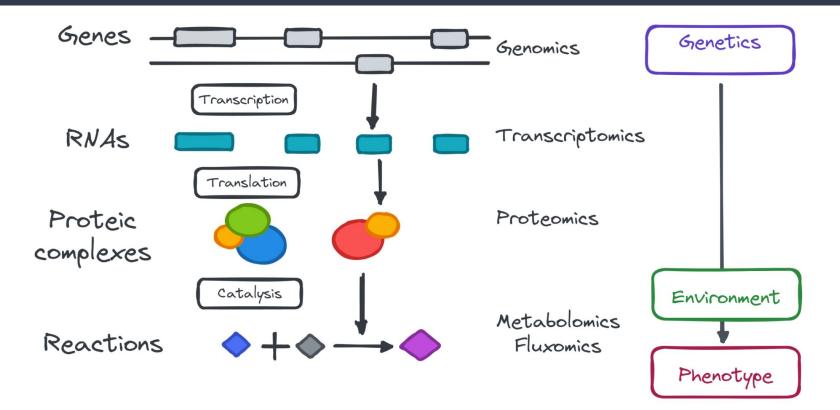
A definition of a genome-scale metabolic network

A metabolic network known to take place in a target organism

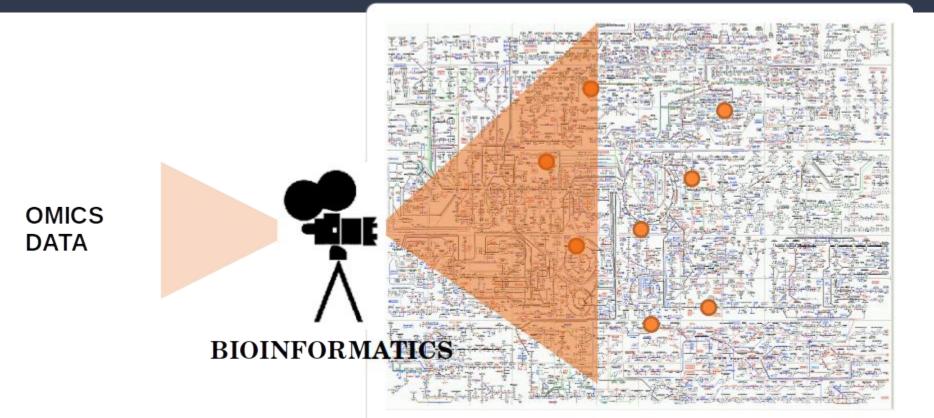
Human-GEM 13024 reactions 8363 metabolites 2920 genes

Robinson JL, Kocabaş P, Wang H, Cholley PE, Cook D, Nilsson A, Anton M, Ferreira R, Domenzain I, Billa V, Limeta A, Hedin A, Gustafsson J, Kerkhoven EJ, Svensson LT, Palsson BO, Mardinoglu A, Hansson L, Uhlén M, Nielsen J, 2020. *An atlas of human metabolism*. Science signaling human genome-scale metabolic reconstruction Recon2.2 7785 reactions 2652 metabolites 1675 genes

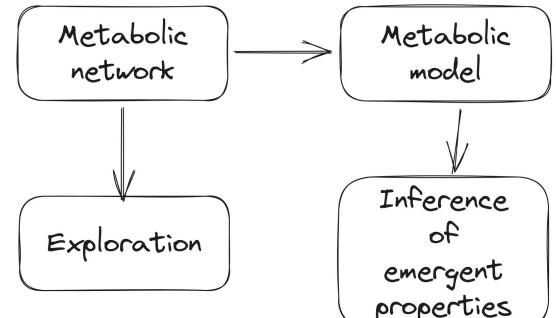

Swainston N. et al. Metabolomics. 2016.

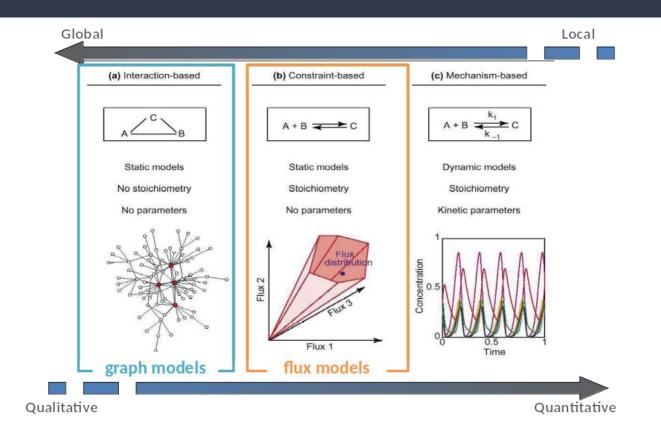

Genome-scale metabolic reconstructions

Build from its genome annotation.


- Infer catalytic activities from comparisons between sequences of target genes and genes of model organisms
- Deduced list of reactions that can potentially take place in the target organism
- Associated metabolites from reactions

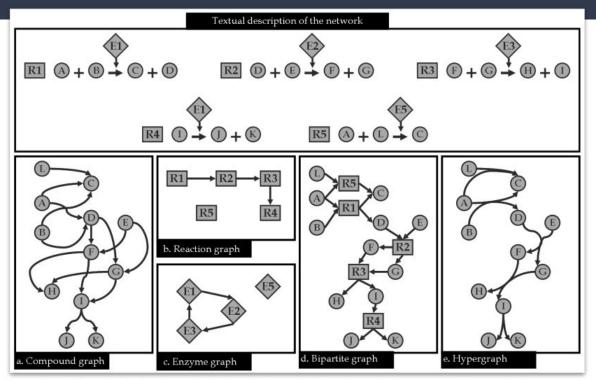
The metabolic network: a context of interpretation for omics data


Mapping omics data

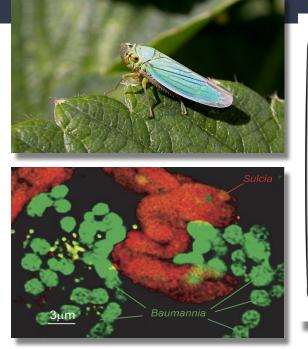

Metabolic networks to metabolic models

The behavior of the whole system cannot be deduced from the analysis of its individual components

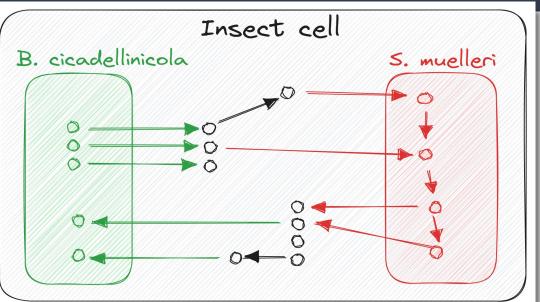
Metabolic network: textual description



Metabolic models


Graph models

Metabolic graphs are built from the descriptions of the set of reactions that constitute a metabolic network



Cottret L and Jourdan F. Graph methods for the investigation of metabolic networks in parasitology. Parasitology, 2010 6:1-15

Graph models to analyse metabolic interactions

Wu D et al. (2006) Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters. PLOS Biology 4(6): e188.

Cottret L, Milreu PV, Acuña V, Marchetti-Spaccamela A, Stougie L, Charles H, Sagot MF. **Graph-based analysis of the metabolic exchanges between two co-resident intracellular symbionts, Baumannia cicadellinicola and Sulcia muelleri, with their insect host, Homalodisca coagulata.** PLoS Comput Biol. 2010 Sep 2;6(9):e1000904..

Flux Balance Analysis (FBA)

Based on Genome-scale metabolic network

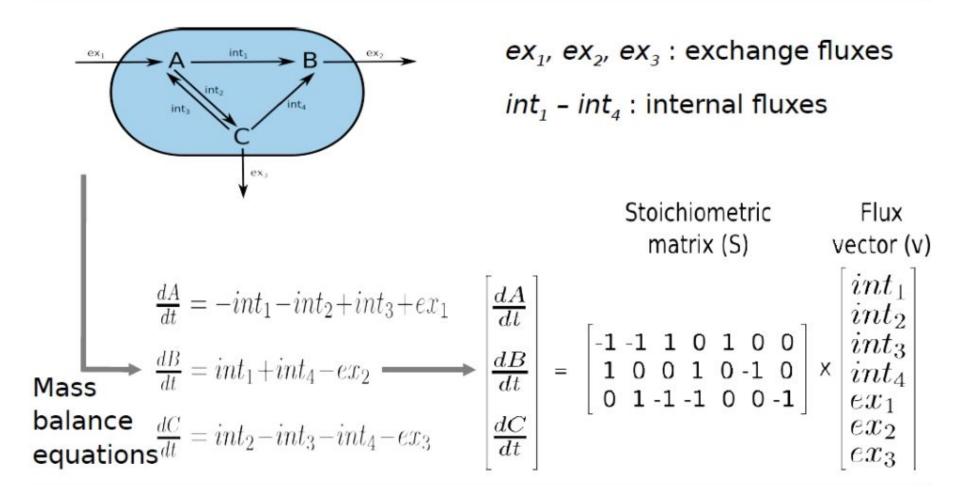
Aim to describe the biological phenotype

In mathematical terms

• Compute flux distributions

<u>Flux</u> = rate of synthesis / consumption of a metabolite in a reaction unit = mmol. g DW⁻¹. h⁻¹

<u>Flux distribution</u> = flux values for all reactions in the model


FBA: Mathematical representation

Mathematical representation of metabolic reactions

Stoichiometric matrix S: M * n

M = compounds in the metabolic network n = reactions in the metabolic network Entries = stoichiometric coefficients of each reactions

	GLCt4	HEX	PGI	G6DH2	GLCter
gluc	-1	0	0	0	0
gluc _e gluc _c	+1	-1	0	0	-1
Na	-1	0	0	0	0
Na	+1	0	0	0	0
ATP	0	-1	0	0	0
ADP	0	+1	0	0	0
C	0	+1	-1	-1	0
g6p f6p	0	0	+1	0	0
6pgl	0	0	0	+1	0
nadp	0	0	0	-1	0
nadph	0	0	0	+1	0
gluc	0	0	0	0	+1

FBA: Applying constraints

- The stoichiometric matrix and the reconstruction give a structure for possible fluxes, but not all flux distributions are actually feasible in a given context.
- Biological functions are governed by constraints (Organisms exist in a resource-scarce environment → survival thus depends on best utilization of resources to survive & grow)

 \rightarrow the imposition of constraints limits computable phenotypes to the relevant biological plausible ones.

FBA: The steady-state hypothesis

hypothesis = the time constants characterizing metabolic transients are typically very rapid compared to the time constants of cell growth, so that we consider a steady-state behavior for all system metabolites

 $\frac{\mathrm{dS}_{\mathrm{i}}}{\mathrm{dt}} = 0 \qquad \Leftrightarrow \quad \sum \nu_{\mathrm{R}_{\mathrm{synthesis}}} = \sum \nu_{\mathrm{R}_{\mathrm{degradation}}}$ for each metabolite i: $\frac{dS}{dt} = S \cdot v = 0$ Mass balance equations $\frac{dA}{dt} = -int_1 - int_2 + int_3 + ex_1$ Steady state: for the network: $-int_1 - int_2 + int_3 + ex_1 = 0$ $int_1 + int_4 - ex_2 = 0$ $\frac{dB}{dt} = int_1 + int_4 - ex_2$ $int_2 - int_3 - int_4 - ex_3 = 0$ $\frac{dC}{dt} = int_2 - int_3 - int_4 - ex_3$ Matrix form: S·v=0 int_1 $int_2 \\ int_3 \\ int_4 \\ ex_1$

 -1
 -1
 0
 1
 0
 0

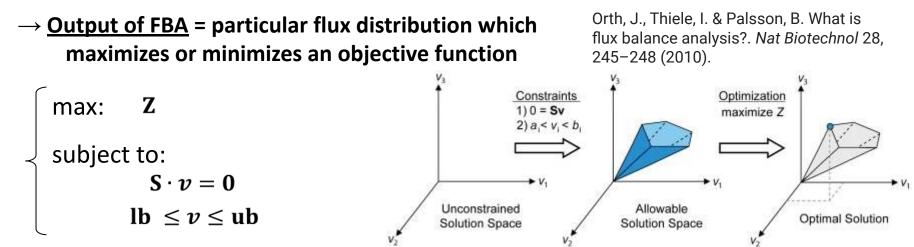
 1
 0
 0
 1
 0
 -1
 0

 0
 1
 -1
 1
 0
 0
 -1

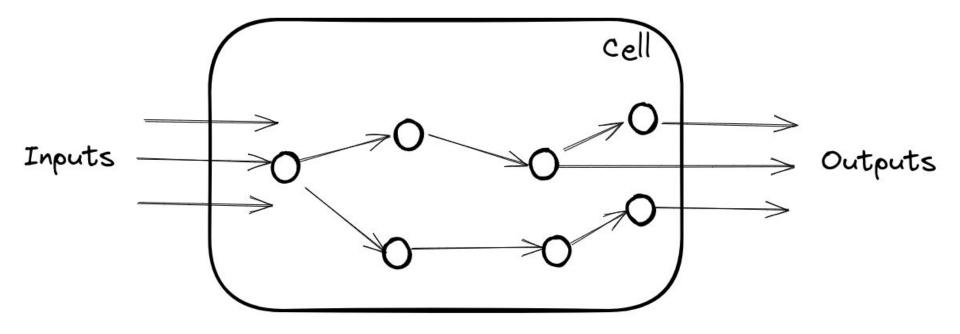
 = 0 ex_2 ex_3

FBA: Restricting reactions flux bounds

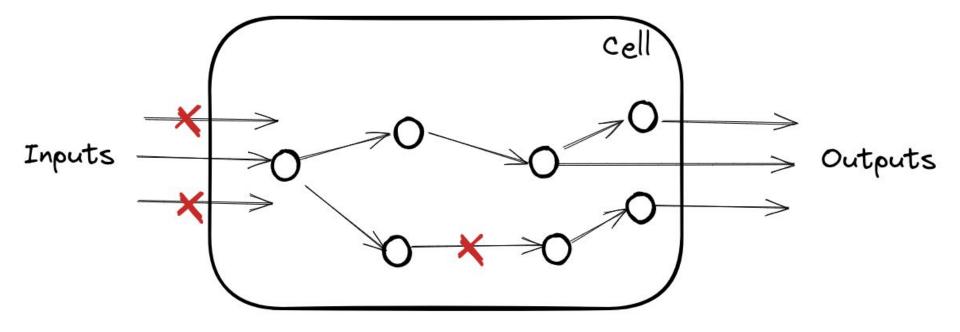
for each reaction $R_j : v_{j,\min} \le v_j \le v_{j,\max}$ in the matrix format: $lb \le v \le ub$ \downarrow how to determine the bounds? $v_{j,\min} : ... v_{j,\min} : ... v_{j,\min} : ... v_{n,\min}$

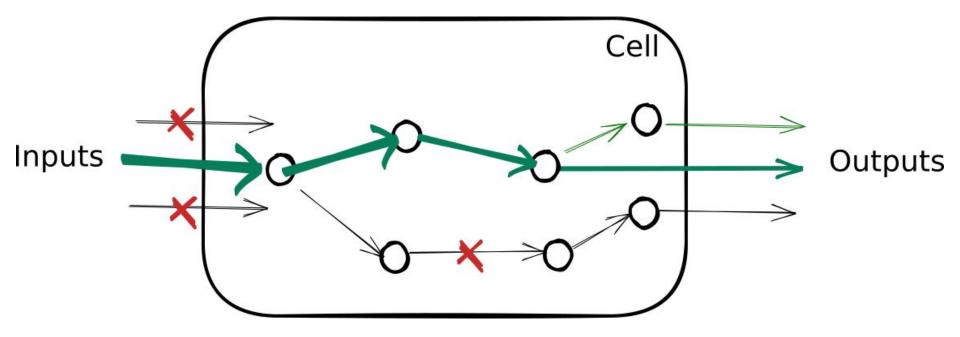

1. by default lb = -Inf ub = +Inf **2.** possible constraints:

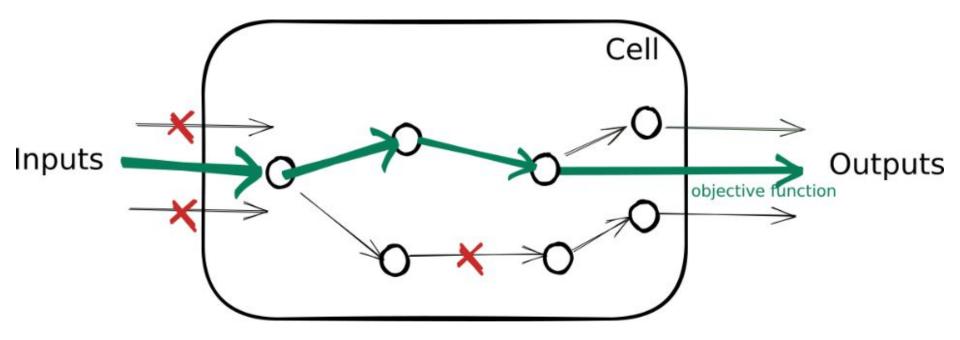
thermodynamic: 0 < v < +inf
enzymatic capacity: a < v < b
for exchange reactions: v > 0 ↔ secretion
 v < 0 ↔ intake</pre>


A linear programming optimization problem

<u>Aim</u> = finding one particular solution in the entire solution space (optimal solution under some conditions)


<u>**Concept</u>** = the cell functions in an optimal metabolic state (e.g. optimal growth under given conditions)</u>


Flux Balance Analysis (FBA)


FBA: environmental and genetic constraints

FBA: environmental and genetic constraints

FBA: optimise an objective function

Flux Balance Analysis

- Optimize biomass or production of metabolites of interest
- Analysis of environmental, enzymatic or genetic perturbations (e: *in silico* gene deletions)
- Generate sub-networks from transcriptomics data
- Just one of many solutions

Use case with MetExplore: mRNA mapping for BRCA context

MetExplore

MetExplore Computational infrastructure for metabolic network analysis Funding: ANR MetaboHub, H2020 Phenomenal

- Long lasting project established in 2009
- 842 registered users, >540 persons trained, >20 000 visits since 2009

Published online 3 May 2018

> 1300 networks

Publications:

Cottret et al (2018). Nucleic Acids Research Chazalviel et al (2017). Bioinformatics

 \rightarrow >140 citations

W252-W257 Nucleic Acids Research, 2018, Vol. 38, Web Server inner dot 38 JWEbser (sha712)

Ludovic Cottret¹*, Published online 30 April 2008 Hubert Charles^{3,6}, I

MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks

- Involved in several national and EU grants
- 1 industrial partner (MedDay pharma)

Ludovic Cottret IR INRAE

IE INRAE

Marion Liotier CDD IE MetaboHub

medDay

Website: http://www.metexplore.fr/

- Database of metabolic networks
- Collaborative annotation of metabolic networks
- Import of omics data
- Visualization of metabolic networks
- Flux Balance Analysis
- Sub-network extraction (graph based computations)

MetExploreViz: web component for interactive metabolic network visualization

Nucleic Acids Research, 2018, Vol. 46, Web Server June - W495-W302

Ant 30 MWHareheim 201

Maxime Chazalviel^{1,2}, Clément Frainay¹, Nathalie Poupin¹, Florence Vinson¹, Benjamin Merlet¹, Yoann Gloaguen², Ludovic Cottret⁴ and Fabien Jourdan^{1,+}

MetExplore: collaborative edition and exploration of metabolic networks

Ludovic Cottret1., Clément Frainay2, Maxime Chazalviel2.5, Floréal Cabanettes1. Yoann Gloaguen^{4,5,6}, Etienne Camenen², Benjamin Merlet², Stéphanie Heux^{7,6,9}, Jean-Charles Portais^{7,8,9}, Nathalie Poupin², Florence Vinson² and Fabien Jourdan²

Warmaking, 34(2), 2018, 312-313 e 10.1003/bioinformatics/bio588 eation Date: 15 September 2017 Applications Note

Select a BioSource

BioSource:

metabolic network built for a strain, a cell line or a specific condition

Recon2.2 Swainston 2016 -Reconstruction of human metabolic network

ioSources Compartments (10/10) Pathways (99/99) Reactions (7785/7785) M	etabolites (6047/6047) Enzymatic Cor	mplexes (1815/1815) Gene Products	(1675/1675) G	enes (1675/1675)		Selected BioSourc	e				
u can dramge the grouping option here: If Group Table Group by: I d Name Harpegnathos saltator Helionature pylori Helionature pylori Heliona	Expand All Collapse All Source Database Publication BioCyc Publication KEGG Map MetErglore Publication Publication Publication	Others (SBML_) KEGG Others (SBML_) KEGG Others (SBML_) KEGG Others (SBML_) Others (SBML_) Others (SBML_) Others (SBML_)	7440 2527 3742 2527 3742 2599 2785 2539	nes (16/3/1672) Nb Metabolites 5063 5063 2701 3188 1560 2592 1420 6047	2 (2) Nb Genes 2191 3583 1905 1417 1993 0 1675	Public: Homo sapiens (Str Private: Select private B	rain: Global) (Source lioSource Strain: Global) (S o urce	Met 6047	E. Cplx 1815	ion: Recon G. Prod 1675	Genes
66 4	VMH Publication KEGG Map VMH VMH MetExplore HMA Publication KEGG Map SBML	Others (SBML_) Others (SBML_) KEGG Others (SBML_) SBML Others (SBML_) SBML Others (SBML_) SBML KEGG SBML	7440 8264 1931 7440 13543 5389 8181 13097 2067 13082	5063 5620 1572 5063 8399 4095 6006 10073 1618 8378	2140 2315 1455 2191 3697 2990 3765 3628 1456 3625	Strain: Source Database: URL: Id in Database: Version: Database type: Publication Swainston N et al	MODEL1603150 Recon2.2 Others (SBML,)	D01			
175 0 6 ihuman 1.10 Iordeum vulgare vodes scapularis kebsiella pneumoniae activabaillus casei	humanGEM github	SBML	13078	8370	3625	Cart Jobs Filters					

Matching identifiers

Convert geneSymbol to HGNC, Ensembl, ...

Many online tools to convert:

moduleColor

black

geneSymbol

UNC119B

SAMD9L

XAF1

IFIT3

IFI27

IFITM3

RSAD2

IFIT2

OAS2

STAT1

ISG15

MX1

https://www.genenames.org/tools/multi-symbol-checker/

-0.00370038062939586

-0.0129288477133737

-0.0159104308999613

0.022306669500763

0.0245334233426714

0.0341598242885462

-0.0354389947948108

0.036981814033086

0.0391806736477964

-0.0534831775338735

-0.0579761971135094

0.0586330766876939

p.GSsubtype

0.942836202777498

0.802167070283227

0.757831880390286

0.66551708768726

0.634447660871975

0.507883700542923

0.492116338470493

0.473452708854494

0.447536675914385

0.299675078389574

0.260843826228363

0.255471241739053

28 HGNC:10856 29 HGNC:10860

30 HGNC:10862

GSsubtype

	BioSources Compartm	nents (10/10) Pathways (99/99) React	tions (7785/7785) Metabolites (6047/6047)	Enzymatic Complexes	s (1815/1815) Gene Products (1675/1675) Genes (1675/1675)
,	🕀 Add 🧪 Edit 🛛 🔇	Delete 🔰 🍘 Curation Votes 🛛 🏥 Load Alia	ses			(
	Name				Identifier	
	exact sub-string s	earch		0	exact sub-string search	6
	1 HGNC:10006				HGNC:10006	
	2 HGNC:1027				HGNC:1027	
i-sy	3 HGNC:10293				HGNC:10293	
	4 HGNC:10297 5 HGNC:10451				HGNC:10297	
	6 HGNC:10451				HGNC:10451 HGNC:10452	
	7 HGNC:10432				HGNC:10452	
MM.tur		p.MMturquoise	Λ		HGNC:1048	
	73665896518	0.00680678957369399	0		HGNC:10536	
	674080345198	0.147905398011975			HGNC:10540	
	579526430889	0.713322891481581	0		HGNC:10545	
	735267897258	0.779109076821725			HGNC:10547	
	26650347724	0.256336457258585			HGNC:10571	
	761117738355	0.705846195052202			HGNC:10606	
	11033579536	0.0262570034583564			HGNC:1062	
	958031744976	0.452013962333683			HGNC:1063 HGNC:10680	
			-		HGNC:10680	
	275273098786	0.679366143933709			HGNC:10682	
	46588284105	0.00234619101231982	0		HGNC:10683	
	82685124308	0.0360241085901714	=		HGNC:10691	
0.00599	316081877001	0.907545153934827	-1		HGNC:10761	
	23 HGNC:108				HGNC:108	
	24 HGNC:10817				HGNC:10817	
	25 HGNC:10818				HGNC:10818	
	26 HGNC:10850				HGNC:10850	
	27 HGNC:10852				HGNC:10852	
	28 HGNC:10856				HGNC:10856	

HGNC:10860

HGNC:10862

Mapping genes

Missing data: few explications

- Identifiers
- Incomplete network

Not metabolism genes

Dem	_									
	file (.csv .t	xt): 📮 separator. tab								
		is header of columns:								
Vlapping		Mapping								
Perform o	one separa	ate mapping for each column:								
Copy/F	Paste in g	yrid								
			Object:	Gene	v	Feature: Ide	ntifier	~		
	Identifie	Feature								
1	false	HGNC:16488								
2	false	HGNC:30932								
3	false	HGNC:1349								
4	false	HGNC:5411								
5	false	HGNC:5397								
6	false	HGNC:5414								
7	false	HGNC:30908								
8	false	HGNC:5409								
	e:	without conditions values	Ψ.							

Mapping genes

Mapping data appear on grids

Ordering data on genes grid by condition (subModules)

- Missing group 1 (black color)

BioSour	ces Compartments (10/10) Pathways (99/99) Reactions (7785/7785) Meta	abolites (6047/6047)	Enzymatic Complexes (1815/1815)	Gene Products (1675/1675)	Ger	nes (1675/1675)	
🕀 Add	🖉 Edit 🚫 Delete 🦃 Curation Votes 📑 Load Aliases						0
	Name		Identifier			Mapp	ing 🛛
	exact sub-string search	8	exact sub-string search		٢	identified 🕹	condition0
1	HGNC:1027		HGNC:1027			true	3
2	HGNC:10571		HGNC:10571			true	5
з	HGNC:1063		HGNC:1063			true	8
4	HGNC:10860		HGNC:10860			true	2
5	HGNC:10862		HGNC:10862			true	4
6	HGNC:10872		HGNC:10872			true	2
7	HGNC:10909		HGNC:10909			true	3
8	HGNC:10911		HGNC:10911			true	4
9	HGNC:10922		HGNC:10922			true	8
10	HGNC:10923		HGNC:10923			true	5
11	HGNC:10924		HGNC:10924			true	2
12	HGNC:10937		HGNC:10937			true	9
13	HGNC:10938		HGNC:10938			true	8
14	HGNC:10941		HGNC:10941			true	2
15	HGNC:10942		HGNC:10942			true	8
16	HGNC:10952		HGNC:10952			true	2
17	HGNC:10962		HGNC:10962			true	2
18	HGNC:10969		HGNC:10969			true	8
19	HGNC:11005		HGNC:11005			true	9
20	HGNC:11007		HGNC:11007			true	7
21	HGNC:11023		HGNC:11023			true	4
22	HGNC:11033		HGNC:11033			true	4
23	HGNC:11041		HGNC:11041			true	8
24	HGNC:11055		HGNC:11055			true	8
25	HGNC:11056		HGNC:11056			true	5
26	HGNC:11057		HGNC:11057			true	9
27	HGNC:11063		HGNC:11063			true	9
28	HGNC:11065		HGNC:11065			true	2
29	HGNC:11066		HGNC:11066			true	8
30	HGNC:11177		HGNC:11177			true	2 .

Flux Variability Analysis

Non-exhaustive list of metabolites signatures (oncometabolites)

 From this list of metabolites, we extract reactions that produce or consume these metabolites

Mishra P, Ambs S. Metabolic Signatures of Human Breast Cancer. *Mol Cell Oncol.* 2015

Hypothesis: cancer cell seeks to facilitate its proliferation by increasing its production of biomass

- Optimize biomass reaction for Flux Variability Analysis
- KO reactions

User Profile	Network Data	Network Curation	Network Viz	🔀 Flux Variability Ana
	e minimum and the jective function to l	maximum flux for eac be optimal	h reaction that	
– Analysis title				
Flux Variab	ility Analysis			
- Standard Par	rameters			
- objectiveR	eactions			-
R_biomas	ss_reaction			
report rea	ction table selection			
- objectiveS	ense			
MIN		 MAX 		
- reactionSe	t			
		*		
report rea	ction table selection			
- secondObj	ectiveReactions —			
		-		
report rea	ction table selection			
- secondObj	ectiveSense			
○ MIN		MAX		
- libertyPerc	entage			
0				
ko_genes				
		*		
report gen	e table selection			
- ko_reactio	ns			
R_r0744,	R_FAOXC50Hc,R_I	rC 🔻		
report rea	ction table selection			

Filters

Interlinked grids: filtering one affects the content of the other ones

-											-
BioSour	ces Compartments (10/10)	Pathways (99/99)	Reactions (7785/7785)	Meta	bolites (6047/6047)	Enzymatic Complexes (1815/1815)	Gene Products (1675/1675)	Gen	es (1675/1675)		
🕀 Add	🖉 Edit 🛛 Delete 🛛 🔊	Curation Votes	.oad Aliases								0
	Name					Identifier			Mappi	ing 🛚	
	exact sub-string search				0	exact sub-string search		۲	identified 🕹	condition0	
1	HGNC:1027					HGNC:1027			true	3	-
2	HGNC:10571					HGNC:10571			true	5	
3	HGNC:1063					HGNC:1063			true	8	
4	HGNC:10860					HGNC:10860			true	2	
5	HGNC:10862					HGNC:10862			true	4	
6	HGNC:10872				Filter on selection	NC:10872			true	2	
7	HGNC:10909				Delete Filter & Search	5NC:10909			true	з	
8	HGNC:10911			0) help	5NC:10911			true	4	
9	HGNC:10922					HGNC:10922			true	8	
10	HGNC:10923					HGNC:10923			true	5	
11	HGNC:10924					HGNC:10924			true	2	
12	HGNC:10937					HGNC:10937			true	9	
13	HGNC:10938					HGNC:10938			true	8	
14	HGNC:10941					HGNC:10941			true	2	
15	HGNC:10942					HGNC:10942			true	8	
16	HGNC:10952					HGNC:10952			true	2	
17	HGNC:10962					HGNC:10962			true	2	
18	HGNC:10969					HGNC:10969			true	8	
19	HGNC:11005					HGNC:11005			true	9	
20	HGNC:11007					HGNC:11007			true	7	
21	HGNC:11023					HGNC:11023			true	4	
22	HGNC:11033					HGNC:11033			true	4	
23	HGNC:11041					HGNC:11041			true	8	
24	HGNC:11055					HGNC:11055			true	8	
25	HGNC:11056					HGNC:11056			true	5	
26	HGNC:11057					HGNC:11057			true	9	
27	HGNC:11063					HGNC:11063			true	9	
28	HGNC:11065					HGNC:11065			true	2	
29	HGNC:11066					HGNC:11066			true	8	

Propagation of the filters

Filters: genes mapped

Interlinked grids: filtering one affects the content of the other ones

- Update data on grids

BioSou	rces Compartments (9/10)	Pathways (78/99)	Reactions (1269/7785)	Metabolites (1629/6047)	Enzymatic Complexes (263/1815)	Gene Products (221/1675)	Genes	221/1675)	
🕀 Add	🖉 Edit 🛛 😒 Delete 🗌 🔊 🕻	uration Votes	Load Aliases						0
	Name				Identifier			Map	ping 🛛
	exact sub-string search			G	exact sub-string search		0	identified 🕹	condition0
1	HGNC:1027				HGNC:1027			true	3
2	HGNC:10571				HGNC:10571			true	5
З	HGNC:1063				HGNC:1063			true	8
4	HGNC:10860				HGNC:10860			true	2
5	HGNC:10862				HGNC:10862			true	4
6	HGNC:10872				HGNC:10872			true	2
7	HGNC:10909				HGNC:10909			true	3
8	HGNC:10911				HGNC:10911			true	4
9	HGNC:10922				HGNC:10922			true	8
10	HGNC:10923				HGNC:10923			true	5
11	HGNC:10924				HGNC:10924			true	2
12	HGNC:10937				HGNC:10937			true	9
13	HGNC:10938				HGNC:10938			true	8
14	HGNC:10941				HGNC:10941			true	2
15	HGNC:10942				HGNC:10942			true	8
16	HGNC:10952				HGNC:10952			true	2
17	HGNC:10962				HGNC:10962			true	2
18	HGNC:10969				HGNC:10969			true	8
19	HGNC:11005				HGNC:11005			true	9
20	HGNC:11007				HGNC:11007			true	7
21	HGNC:11023				HGNC:11023			true	4
22	HGNC:11033				HGNC:11033			true	4
23	HGNC:11041				HGNC:11041			true	8
24	HGNC:11055				HGNC:11055			true	8
25	HGNC:11056				HGNC:11056			true	5
26	HGNC:11057				HGNC:11057			true	9
27	HGNC:11063				HGNC:11063			true	9
28	HGNC:11065				HGNC:11065			true	2
29	HGNC:11066				HGNC:11066			true	8
30	HGNC:11177				HGNC:11177			true	2 -

Pathways enrichment

On mapping: automatique pathways enrichment with p-value and corrected p-value

With correction, **4 pathways** have been identified:

- Fatty acid oxidation
- Fatty acid synthesis
- Eicosanoid metabolism
- Glutamate metabolism

Filters data on this 4 pathways

BioSources	Compartments (9/10) Pathways (78/99)	Reactions (1269/7785) Metabolites	(1629/6047)	Enzymatic Complexes	(263/1815)	Gene Products (221/	(1675) (Genes (221/1675)			
🕀 Add	🖉 Edit 🛛 🕄 Delete 🛛 🖬 Curation Statistics	Q Curation Votes							0		
	Name	Identifier				Mapping on Gene 🕐 😣					
	exact sub-string search	exact sub-string search	Nb Reactions	% Reactions with Enz.	Coverage	Nb of Mapped	p-value	Bonferroni corre	BH-corrected p-		
1 0	Fatty acid oxidation	Fatty acid oxidation	809	78%	24.14	21	3.13e-3	(2.44e-1)	(1.25e-1)		
2 🚯	Fatty acid synthesis	Fatty acid synthesis	118		41.18	7	3.82e-3	(2.98e-1)	(1.25e-1)		
3 0	Eicosanoid metabolism	Eicosanoid metabolism	252	62 %	24.66	18	4.83e-3	(3.76e-1)	(1.25e-1)		
4 0	Glutamate metabolism	Glutamate metabolism	15	93%	35	7	1.07e-2	(8.37e-1)	(2.09e-1)		
5 🖯	Transport, extracellular	Transport, extracellular	1472	79 %	14.05	34	3.68e-1	(1.00e+0)	(7.96e-1)		
6	Nucleotide interconversion	Nucleotide interconversion	177	93 %	12.93	15	5.79e-1	(1.00e+0)	(8.86e-1)		
7 0	Inositol phosphate metabolism	Inositol phosphate metabolism	64	65 %	18.33	11	1.57e-1	(1.00e+0)	(6.13e-1)		
8	Glycolysis/gluconeogenesis	Glycolysis/gluconeogenesis	40	100 %	12.99	10	5.75e-1	(1.00e+0)	(8.86e-1)		
9 🖯	Valine, leucine, and isoleucine metabolism	Valine, leucine, and isoleucine m	41	85 %	27.03	10	1.77e-2	(1.00e+0)	(2.76e-1)		
10 🚯	Sphingolipid metabolism	Sphingolipid metabolism	83	91%	18	9	2.05e-1	(1.00e+0)	(6.38e-1)		
11 0	Pyruvate metabolism	Pyruvate metabolism	30	83%	22.5	9	7.06e-2	(1.00e+0)	(4.99e-1)		
12	0-glycan synthesis	O-glycan synthesis	15	73%	30.43	7	2.40e-2	(1.00e+0)	(2.67e-1)		
13 🚯	Miscellaneous	Miscellaneous	86	69 %	9.09	7	9.02e-1	(1.00e+0)	(1.05e+0)		
14 0	Cholesterol metabolism	Cholesterol metabolism	57	82 %	24.14	7	7.68e-2	(1.00e+0)	(4.99e-1)		
15 🚯	Arginine and Proline Metabolism	Arginine and Proline Metabolism	39	74%	22.58	7	1.03e-1	(1.00e+0)	(5.07e-1)		
16 🚯	Pyrimidine catabolism	Pyrimidine catabolism	35	82 %	25	7	6.53e-2	(1.00e+0)	(4.99e-1)		
17 🚯	Glyoxylate and dicarboxylate metabolism	Glyoxylate and dicarboxylate met	15	73%	23.33	7	8.94e-2	(1.00e+0)	(5.37e-1)		
18 🚯	Triacylglycerol synthesis	Triacylglycerol synthesis	13	100 %	21.43	6	1.54e-1	(1.00e+0)	(6.13e-1)		
19 🚯	Glycerophospholipid metabolism	Glycerophospholipid metabolism	66	77%	8.45	6	9.24e-1	(1.00e+0)	(1.05e+0)		
20 🚯	Tryptophan metabolism	Tryptophan metabolism	68	70 %	11.54	6	7.03e-1	(1.00e+0)	(9.79e-1)		
21 🚯	Bile acid synthesis	Bile acid synthesis	125	75 %	13.95	6	5.10e-1	(1.00e+0)	(8.75e-1)		
22 🛈	Fructose and mannose metabolism	Fructose and mannose metaboli	25	80 %	20	6	1.95e-1	(1.00e+0)	(6.60e-1)		
23 🚯	Tyrosine metabolism	Tyrosine metabolism	117	70%	8.2	5	9.22e-1	(1.00e+0)	(1.05e+0)		
24 0	Vitamin C metabolism	Vitamin C metabolism	16	25%	35.71	5	2.79e-2	(1.00e+0)	(2.73e-1)		
25 🚯	Propanoate metabolism	Propanoate metabolism	13	61%	22.73	5	1.54e-1	(1.00e+0)	(6.13e-1)		
26 🚯	Histidine metabolism	Histidine metabolism	16	68%	21.74	5	1.77e-1	(1.00e+0)	(6.27e-1)		
27 🚯	Urea cycle	Urea cycle	68	63%	20	5	2.26e-1	(1.00e+0)	(6.63e-1)		
28 🚯	N-glycan synthesis	N-glycan synthesis	81	40 %	16.67	4	3.92e-1	(1.00e+0)	(7.85e-1)		
29 🚯	Purine catabolism	Purine catabolism	36	77%	14.29	4	5.16e-1	(1.00e+0)	(8.75e-1)		
30 🚯	Starch and sucrose metabolism	Starch and sucrose metabolism	32	84 %	16	4	4.24e-1	(1.00e+0)	(8.03e-1) -		

Data exploration

Be checking scientific literature, we can find some articles that confirm the results found:

• Monaco ME. Fatty acid metabolism in breast cancer subtypes. *Oncotarget*. 2017

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438746/#:~:text=Evidence%20indicates%20that%20proteins%20involved,invasion% 20of%20breast%20cancer%20cells.

• Fazzari, J., Lin, H., Murphy, C. et al. Inhibitors of glutamate release from breast cancer cells; new targets for cancer-induced bone-pain. Sci Rep. 2015

https://www.nature.com/articles/srep08380#:~:text=Breast%20cancer%20cells%20secrete%20high,advanced%2Dstage%20breast%2 Ocancer%20patients.

• Wang D, Dubois RN. Eicosanoids and cancer. *Nat Rev Cancer*. 2010

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2898136/

• Yi H, Talmon G, Wang J. Glutamate in cancers: from metabolism to signaling. *J Biomed Res*. 2019

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386414/

Filters: FBA result

Only reactions with a non-zero flux value are kept

276 reactions of interest remain

Visualise this sub-network

User Profile	e Network Data Network Curation Net	work Viz 🔀 Flux Variability A	Analysis ×						
BioSources	6 Compartments (10/10) Pathways (99/99) Reactions (7785/7785)	Metabolites (604	.7/6047) Enzymatic Complexes (1815/1815)	Gene Prod	ucts (1675/1	675) Gei	nes (1675/1675)	
🕀 Add	🖉 Edit 🛛 🔇 Delete 🕴 🍖 Save 🛛 🗮 Multi	ple affectation	atistics 🛛 🕢 Cur	ration Votes 🛛 🕂 Equations 🖬 Load Aliases					0
	Name	Identifier	E.C.		Reversible.	Flux Lower	Flux Upper	Flux Variabil	ity Analysis 1
	exact sub-string search	exact sub-string search	exact sub- 🛞	GPR				min	max
1 0	({[(2R,3S,5R)-3-hydroxy-5-(5-methyl-2,4-di	R_EX_dtdp_LPAREN_e_R	NA		~	-Infinity	Infinity	-99999.0	99999.0
2 0	(+)-alpha-Pinene exchange	R_EX_appnn_LPAREN_e	NA		\checkmark	-Infinity	Infinity	-99999.0	0.0
з Ө	(24R,25R)-3alpha,7alpha,12alpha,24-tetrahy	R_r0744	4.2.1.107	(HGNC:5213)		0	Infinity	0.0	99999.0
4 0	(3-hydroxyisovalerylcoa>3-hydroxyisovaler	R_FAOXC5OHc	NA	(HGNC:18540) or (HGNC:2328) or (HGNC:232	\checkmark	-Infinity	Infinity	0.0	99999.0
5 🖯	(3R)-3-Hydroxybutanoyl-[acyl-carrier protein	R_r0691	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
6 🖯	(3R)-3-Hydroxybutanoyl-[acyl-carrier-protei	R_r0693	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
7 🔴	(3R)-3-Hydroxybutanoyl-[acyl-carrier-protei	R_r0681	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
8 🖯	(3R)-3-Hydroxybutanoyl-[acyl-carrier-protei	R_r0770	2.3.1.85	(HGNC:3594)		-Infinity	Infinity	-39999.6	39999.6
9 🖯	(3R)-3-Hydroxybutanoyl-[acyl-carrier-protei	R_r0762	2.3.1.85	(HGNC:3594)		-Infinity	Infinity	-39999.6	39999.6
10 🚯	(3R)-3-Hydroxybutanoyl-[acyl-carrier-protei	R_r0695	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
11 🚯	(3R)-3-Hydroxydecanoyl-[acyl-carrier-protei	R_r0692	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
12 🚯	(3R)-3-Hydroxydodecanoyl-[acyl-carrier-prot	R_r0769	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
13 🚯	(3R)-3-Hydroxyhexanoyl-[acyl-carrier-protei	R_r0761	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
14 0	(3R)-3-Hydroxyoctanoyl-[acyl-carrier-protein	R_r0694	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-39999.6	39999.6
15 🚯	(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protei	R_r0697	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-99999.0	99999.0
16	(3R)-3-Hydroxypalmitoyl-[acyl-carrier-protei	R_r0696	2.3.1.85	(HGNC:3594)	\checkmark	-Infinity	Infinity	-99999.0	99999.0
17 🚯	(5-Glutamyl)-peptide:amino-acid 5-glutamyl	R_r0641	2.3.2.2	(HGNC:33426) or (HGNC:26891) or (HGNC:18	\checkmark	-Infinity	Infinity	-99999.0	99999.0
18	(5-Glutamyl)-peptide:amino-acid 5-glutamyl	R_r0648	2.3.2.2	(HGNC:33426) or (HGNC:26891) or (HGNC:18	\checkmark	-Infinity	Infinity	-99999.0	99999.0
19	(5-Glutamyl)-peptide:amino-acid 5-glutamyl	R_r0649	2.3.2.2	(HGNC:33426) or (HGNC:26891) or (HGNC:18	\checkmark	-Infinity	Infinity	-99999.0	99999.0
20 🛈	(5-L-Glutamyl)-L-amino-acid 5-glutamyltran	R_r0568	2.3.2.4	(HGNC:21705)		0	Infinity	0.0	99999.0
21	(5Z,9E,14Z)-(8xi,11R,12S)-11,12-epoxy-8-h	R_EX_C04849_LPAREN_e	NA		\checkmark	-Infinity	Infinity	-99999.0	99999.0
22	(E)-carveol exchange	R_EX_carveol_LPAREN_e	NA		\checkmark	-Infinity	Infinity	0.0	99999.0
23 🚯	(Gal)2 (GalNAc)1 (Glc)1 (GlcNAc)1 (LFuc)2 (Cer)	R_EX_fucacgalfucgalacglcg	NA		\checkmark	-Infinity	Infinity	0.0	12499.875
24	(Gal)3 (Glc)1 (GlcNAc)1 (LFuc)1 (Cer)1 exchange	R_EX_galfuc12gal14acglcg	NA		\checkmark	-Infinity	Infinity	0.0	14285.5714

Visualisation

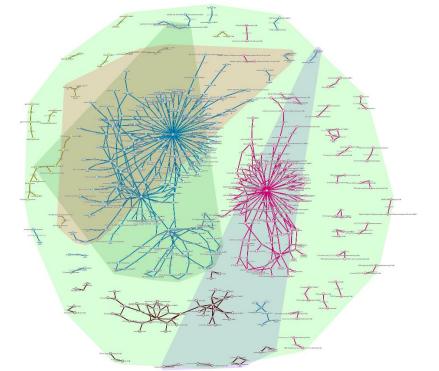
Compa	artments:
-------	-----------

cytoplasm :

endoplasmic reticulum :

mitochondrion :

peroxisome :


Reversible link

Metabolites

MetExploreViz v3.3.8

Pathways:

Eicosanoid metabolism :

Fatty acid oxidation :

Fatty acid synthesis :

Glutamate metabolism :

https://metexplore.toulouse.inrae.fr/userFiles//metExploreViz/index.html?dir=/f455b87bc2ee1438cf5414d7cae7b1f6/networkSaved_1668958991

Data exploration

Link between carnitine and cancer development

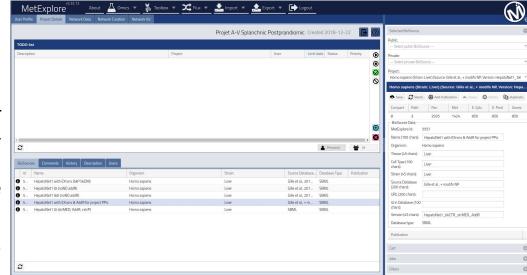
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9300951/

Zhang J, Wu G, Zhu H, Yang F, Yang S, Vuong AM, Li J, Zhu D, Sun Y, Tao W. Circulating Carnitine Levels and Breast Cancer: A Matched Retrospective Case-Control Study. *Front Oncol.* 2022

But, we have still the four pathways ...

Hypothesis

- We have succeeded in highlighting the link between genes and four pathways potentially involved in the development of cancer
- By optimising biomass production, we have shown that the flux that pass through these four pathways
- We can therefore identify a sub-network of interest for the study of breast cancer development, and consequently, a list of metabolites to monitor


To go further with MetExplore

Project creation and collaboration

MetExplore allows users, after login, to create a project and add some collaborators.

On this project you have few possibilities like:

- Import your own network with SBML file, from KEGG DB or MetExplore XML file
- Cure your networks (add, edit or delete data)
- Manage your project (TODO list, comments, history, etc...)

Take home messages

Take home messages

- Genome-scale metabolic network reconstruction allows to explore metabolism and to map omics data
- Metabolic networks offer a context to interpret omics data
- Graph models is able to infer complex behaviours of metabolic networks alone or in interaction
- MetExplore offers facilities to build, explore, visualise and model the metabolic networks
- MetExplore is part of a wider tool ecosystem

Useful links

• MetExplore website:

https://metexplore.toulouse.inrae.fr/

- MetExplore documentation: <u>https://metexplore.toulouse.inrae.fr/metexplore-doc/</u>
- MetExplore tutorial:

https://metexplore.pages.mia.inra.fr/metexplore-training/

Thanks to organizers

Swiss Institute of **Bioinformatics**

Thanks to MetExplore team

Fabien Jourdan DR INRAE

Nathalie Poupin CRCN INRAE

Florence Vinson IE INRAE

Clément Frainay CRCN INRAE

Ludovic Cottret IR INRAE

Elva Novoa Post-doc ANR

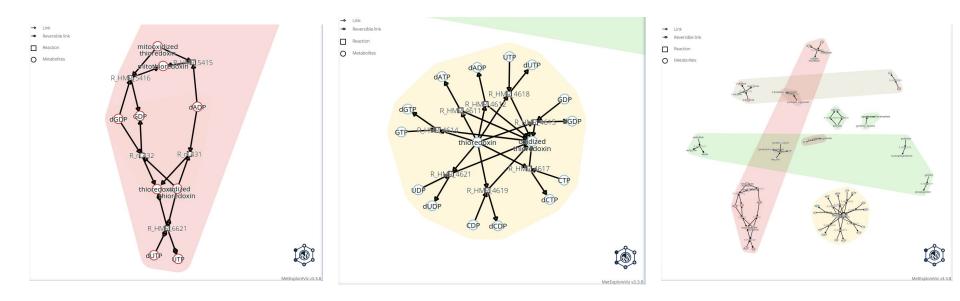
Benedict Yanibada Post-doc H2020

Juliette Cooke PhD INP

Louison Fresnais PhD L'Oréal

Maximilian Stingl CDD IE bioinfo

Jean-Clément Gallardo CDD IE ANR


Marion Liotier CDD IE MetaboHub

Contact: <u>contact-metexplore@inrae.fr</u>

Supplementary data and analysis PAM50 genes list: signatures for breast cancer subtypes convert to ensembl with <u>https://biit.cs.ut.ee/gprofiler/convert</u>

12 genes mapped in humanGEM 25 reactions on 9 pathways including pyrimidine metabolism -> Thioredoxin and its oxydation

Link between this metabolite and cancer progression and metastasis <u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835076/</u>

