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TIPS

Keep track of all command lines you run. You can for example, create a
text file in which you write every commands you run.

Give content-explicit names to the files you’re generating.

Give to files the right extension.

Create directories with explicit names!!

Compress big files (with gzip for instance).



Introduction



Chip-Seq analysis
e Experimental design, Quality Controls, Mapping

e Normalization & peak calling
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I Chip-Seq analysis
e Experimental design, Quality Controls, Mapping
e Normalization & peak calling
e Motif analysis

e Peak annotation

Reads - ‘ Motifs Annotations
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Experimental design



ENCODE

The Encyclopedia of DNA Elements (ENCODE) Consortium has carried out
thousands of ChIP-seq experiments and has used this experience to develop
a set of working standards and guidelines

711

[

Landt SG, Marinov GK, Kundaje A et al. (2012) ChIP-seq guidelines and
practices of the ENCODE and modENCODE consortia. Genome research 22,
1813-1831.

See: https://www.encodeproject.org/about/experiment-guidelines/



Considerations on ChlP

Antibody

Antibody quality varies, even between independently prepared lots of the
same antibody (Egelhofer, T. A. et al. 2011)

Number of cells

large number of cells are required for a ChIP experiment (limitation for
small organisms or precious samples)

Shearing of DNA (Mnase I, sonication, Covaris): trying to narrow down the
size distribution of DNA fragments

—> Complexity in DNA fragments



Library prep

Step between ChIP and sequencing
Starting material: ChIP sample (1-10ng of sheared DNA)

ChIP
¥

Ligation of Adapters

- Size selection (200 or 400 bp)
> PCR amplification

—

Single-eﬂd Sequencing Paired-end Sequencing




Sequencing

Sequencer : Illumina NextSeq 2000

No. of reads per sample: ~40 millions per sample
HiSeq 4000 : 8 samples per lane
NextSeq 2000, p2 (only PE) : 10 samples per flowcell
NextSeq 2000, p3 : 25-30 samples per flowcell

Length of DNA fragment : ~200bp

No. of cycle per run : 50




Single end or paired end ?

Single end (most of the time until 2016)

Paired-end (more and more these days)

@ Improve identification of duplicated reads

@ Better estimation of the fragment size distribution
@ Increase the mapping efficiency to repeat regions
@ The price! But 2 x 40bp is affordable



Sequencing depth

Consider the depth needed depending on:
Chipped protein

A Point sources e.g.
CTCE
MYC
H3K4me3
— 100s of base pairs —
Broad sources e.g.
H3K27me3
H3K9me3
H3K36me3
§' — 100s of kilobases —
% Mixed sources e.g.
= RNA Pol Il
L SUzZ12
=
£
2
=
[N

—— 10s of kilobases —

Chromosome position 3

Nature Reviews | Genetics



Sequencing depth

Consider the depth needed depending on:
ChipBed protein
Number of expected binding sites

Called peaks vs sequencing depth
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Landt et al, 2012



Sequencing depth

Consider the depth needed depending on:
ChipBed protein
Number of expected binding sites
Eize of the genome of interest
X:
For human genomes
20 nlzilllon uniquely mapped read sequences for point-source
peaks,
40 million for broad-source peaks.
For fly genome: 8 million reads
For worm genome: 10 million reads



Controls

Used mostly to filter out false positives (high level of noise)
|ldea: potential false positive will be enriched in both treatment and control.

A control will fail to filter out false positives if its enrichment profile is very
different from the enrichment profile of false positive regions in the treatment
sample

Most commonly used control: Input DNA (a portion of DNA sample removed prior
to IP)

Choice of control is extremely important

It is recommended to cover the control in a higher extent than the IPs



Why an Input is required ?

e The input is used to model local noise level
o Accessible regions are expected to produce more reads
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o Amplified regions (CNV) are expected to produce more reads

111,000 kb 112,000 kb 112,000 kb

CTTNBP2ZNL ST7L  MOVI1O

I i
=
™S cps3 sLcieal LRIG2
©-0911
t@-1.071 wmm.h.“'J-L




Why an Input is required ?

e The input is used to model local noise level
o Accessible regions are expected to produce more reads

'\I =
l”,d —_— \’" o D D D

o Amplified regions (CNV) are expected to produce more reads
o Moreover, most peak callers are configured with an input as control




Other controls

lgG (mock IP): controls for non-specific IP enrichment
o Problem : low-complexity library (few reads)
Histone H3 (for H3 variants)
Uninduced condition (for inducible TFs)
o Example : Glucocorticoid Réceptor
o Induced by Dexamethasone (Dex)
o Control vehicule = Ethanol (EthOH)
KO of your protein of interest
Non flagged cell lines



Replicates

A minimum of two replicates should be carried out per experiment.

Each replicate should be a biological rather than a technical replicate; that is,
it results from an independent cell culture, embryo pool or tissue sample.

21



Data analysed in this course



OPEN G ACCESS Freely available online @PLOS | cenemcs

Dataset used Genome-scale Analysis of Escherichia coli FNR Reveals
Complex Features of Transcription Factor Binding

Kevin S. Myers'?, Huihuang Yan®", Irene M. Ong?, Dongjun Chung*®®, Kun Liang*>", Frances Tran®",
Siindiiz Keles*®, Robert Landick®®7*, Patricia J. Kiley*>*

All experiments (GEO): GSE41187

Experiment: FNR IP ChIP-seq Anaerobic A (SRX189773 - SRR576933)
Control: anaerobic INPUT DNA (SRX189778 - SRR576938)
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I Protocol e tifs

Quality control °Qo 8,0
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Downloading ChlP-seq reads from NCB| . Mapping (bam) -



https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#download

I Protocol

Connect to the server and set up yvour environment



https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#setup

Quality control of the reads



Quality control of the reads

As for any NGS datasets

FastQC program (c.f. Course “preprocessing” Monday afternoon)

28



e DeeisaT o %
I Protocol R

Quality control (Y'Y ....

. Quality control of the reads and statistics =~ o



https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#qc

Mapping



Mapping

Find out the position of the reads within the reference genome

Ref. Genome

e One position in the genome

e Many possible positions (Repeat
regions, duplicate regions,
pseudogenes...)




Mapping example ATGCGATTA
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Genomic coordinates ATGCGATTA

alignment

1
B 125,3

18 start

125,326,358 end

Genomic coordinate of the mapped read :
chr5 125326318 125326358 +

181,538,259

chromosome 5

]



Mapping tool used: Bowtie

Designed to align reads if:
many of the reads have at least one good, valid alignment,
many of the reads are relatively high-quality
the number of alighments reported per read is small (close to 1)

Langmead B. et al, Genome Biology 2009

Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc
Bioinformatics Chapter 11: Unit 11 17



Duplicated genomic regions
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Mappability

Mappability (a): how many times a read of a given length can align at a given
position in the genome

a=1 (read align once)
a=1/n (read align n times)

Alignability of 36mers by GEM from ENCODE/CRG(GUigo

= T 109 O AL 1

Alighability of 48mers by GEM from ENCODE/CRG(GUigo)

wmme I VN i1
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CRG Align 75 ‘ I' J
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I Protocol

e Mapping the reads with Bowtie
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https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#mapping

Mapping: expected sighal
For a transcription factor signal is expected to be sharp

The binding site itself is
TF — generally not

sequenced !

aam ea=
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T'F'/ == Sens alignments
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Mapping: the expected sighal

o For most histone marks the signal is expected to be broad
» Asymmetry is less/not pronounced

» Peak calling algorithms need to adapt to these various signals




Mapping: observed signal

91kb
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Filtering mapped reads



Which reads to filter ?

Low-quality read alignments
Tool : samtools

Multi-mapped reads (unless removed during the mapping step)
Tool : samtools

Duplicated reads (PCR duplicates)

Tool : Picard MarkDuplicates



Source of confusion

uniquely mapped reads = reads that “matches” only 1 region in the genome

multi-mapped

Uniquely mapped
——, h
/ el v a
*

duplicated reads = reads that “match” at the SAME location (same start, strand)

emmeeeem | Stack” of duplicated reads
[ ——




PCR duplicates

e PCR duplicates
o Related to poor library complexity
o The same set of fragments are amplified, may indicates that
immuno-precipitation failed
o Tools to check for
m FastQC report (duplicate diagram)
m PCR bottleneck metric (ENCODE)



QC : PBC (PCR Bottleneck Coefficient)

An approximate measure of library complexity

PBC = N, /N,
N,= Genomic position with 1 read aligned
N, = Genomic position with = 1 read aligned

Value : —
0-0.5: severe bottlenecking — g X
0.5-0.8: moderate bottlenecking -
0.8-0.9: mild bottlenecking — _
0.9-1.0: no bottlenecking — pr——— —

https://genome.ucsc.edu/ENCODE/qualityMetrics.html



I Protocol

Estimating the number of duplicated reads

Filtering (bam)
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https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#dup

Quality Control on mapped reads



Assessing ChIP quality

e Guidelines from ENCODE
e Various metrics
o Check duplicate rate (see previous Filtering section)
o Use a Lorenz Curve (implemented in Deeptools fingerprint)

o Look at strand cross-correlation (implemented in SPP BioC package
and phantompeakqualtools)

o Fraction of reads in peaks (FRiP, as proposed by ENCODE), but requires
to find peaks.



Lorenz curve

Analyze income among workers by
computing cumulative sum.

If uniform income distribution :

m Straight line

“Ildeal” world

Cumulative income of
people from lowest

ié

to highest income

ié

100%

ié

100%

Fraction of total income



Lorenz curve

Analyze income among workers by
computing cumulative sum.

If uniform income distribution :

m Straight line
If they were trumpized
m Lorenz curve

“Ildeal” world

“Trumpized” world

Cumulative income of
people from lowest
to highest income

@ @ @

PRPRP

100%

100%

Fraction of total income




“Ideal” world
(Bad ChIP)

Lorenz curve

“Trumpized” world

100%
(Good ChIP) 00%

Analyze income among workers by
computing cumulative sum.
If uniform income distribution :
m Straight line
If they were trumpized
m Lorenz curve
Here the workers are the genome 100%

. . Cumulative genome windows from lowest
windows and incomes are reads read counts to highest

Fraction of total reads




I Protocol

Plot the Lorenz curve with Deeptools
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https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#cqc

Strand cross-correlation

e Compute strand cross correlation for each window w across the genome.
e Use various distance d and compute the mean cross-correlation observed

Strand cross-correlation
— for each window and

- = various d values
D D

Coverage windowg

2464200 2464200 B

Mean cross-correlation

0 100



CTCF Fragment Peak

CTCF antifact Peak
| &
C-Myc antifact cMyc
Pezake_.. s Fragment Peak
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Carroll et al, Frontiers in genetics, 2014
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Strand cross-correlation

“phantom” peak
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Strand cross-correlation

Successful

§ cc(fragment_length)

014

cc(read_length)

o

mobion

o

o
008

006

NSC: normalized strand coefficient
NSC = ce(fragment length)

min(cc)

NSC = 1.05 is recommended

Failed

Jall
L

cross - comelibon
0on

Relative strand correlation (RSC)

cc(fragment length)—min(cc)
RSC = -
cc(read length) —min(cc)

RSC = 0.8 is recommended




Visualization: computing a genomic
coverage file



I Protocol

Visualizing the data in a genome

browser

Visualization
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https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#visualize
https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#visualize

Bam files are fat

BAM files are fat as they do contain exhaustive information about
read alignments
o Memory issues (can only visualize fraction of the BAM)

Need a more lightweight file format containing only genomic
coverage information:

o X Wig (not compressed, not indexed)

o TDF (compressed, indexed)

o BigWig (compressed, indexed)



Coverage file and read extension

BAM files do not contain fragment location but read location

We need to extend reads to compute fragments coordinates before
coverage analysis

Not required for PE

Window | Wi | Wiy | Wig (Wi (Winy |
- _— . -, . .
— N [ — : :
N - ! . . .
N [ ee— . B o er— !
N L — | —r——— : ;
- L e — . ! ! !
= _—— _—— . . |
N [ —— I s s Y i |
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e ————— = e e— | .
- ——— = A G s—— I |
- ——— wm : =
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P—— ————mm | | T |
= ———— =il
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- — ——amm | R S w—
- ———— =m I e
r— —— =m

Coverage i 6 i 15 120 114 5



Library size normalization

IP condition A
normalization
IP vs input IP vs input
normalization normalization

IP condition B

Inter-condition

input condition A [ J




Library size normalization (input vs IP)

A

input
area ~ number of reads = 10 -
10
treatment
area ~number of reads=10+4+4=18
10
Scaling by library size : upscale input by 18/10 = 1.8
treatment estimated noise level
10

Noise level is over-estimated !



Library size normalization (input vs IP)

[

input
L area ~ number of reads = 10
10
A
5
treatment
1
area ~number of reads =10+ 9 +4 =23
10
Scaling by library size : upscale input by 23/10 = 2.3
A
> treatment estimated noise level
1




Library size normalization (input vs IP)

input

7

7
7

area ~ number of read

10

%

o
///%%//;‘ =23 Z%////////
77777

- A -
. ___ 0

Scaling by library size : upscale input by 23/10 = 2.3

5 treatment estimated noise level
1 . i




L] b ra ry S1Z€ norma l] Zat] on PeakSeq enables systematic scoring of

Example of PeakSeq

3

288

ChIP-seq sample
888

&

Correlation = 0.71
0 50 100 150 200 250 300 350 400
Input DNA

0

All peaks

ChIP-seq experiments relative to controls

Joel Rozowsky , Ghia Euskirchen, Raymond K Auerbach, Zhengdong D Zhang, Theodore Gibson,

Robert Bjornson, Nicholas Carriero, Michael Snyder & Mark B Gerstein

P’=1
o 390 { siope = 0.96
© 300 { Correlation = 0.77

50 -
0

0 50 100 150 200 250 300 350 400
Input DNA

Signal peaks removed



I Protocol

Viewing scaled data

Visualization

Annotation


https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#3---viewing-scaled-data
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Peak Calling




From reads to peaks

Chip-seq peaks are a mixture of two
signals:

+ strand reads (Watson)

- strand reads (Cricks)
The sequence read density accumulates
on forward and reverse strands
centered around the binding site
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From reads to peaks

Get the signal at the right position
Read shift
Extension

Estimate the fragment size

Do paired-end

— . Protein or
/ \:\ nucleosome
! : of interest
i }

1 1
1 1

5 Positive strand 3
3 ! : Negative strand 5
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(=
- o
1
—
1
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1
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T —
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1
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combined tags e L ¢
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K
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— SEN—
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! |
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Peak callers

e The peak caller should be chosen based on
o Experimental design
m SE or PE (E.g MACS1.4 vs MACS2)
o Expected signhal
m Sharp peaks (e.g. Transcription Factors).
o E.g. MACS
m Broad peaks (e.g. epigenetic marks).
e E.g MACS, SICER,...

A O

Sharp peaks Broad peaks
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HIGH-THROUGHPUT SEQUENCING > CHIP-SEQ ANALYSIS > PEAKCALLING

A variety of peak callers — o oo

Identification of genomic regions of interest in ChiP-seq data, commonly referred to as peak-calling, aims to find the locations of

transcription factor binding sites, modified histones or nucleosomes.Source text:(Cairns et al., 2011) BayesPeak-an... v Read more

60 programs listed on OMICTOOLS
Most support a control

MACS / Model-based Analysis for ChIP-Seq

4 (1) ™1 discussion W Favorited 4 times
A software to analyze data generated by short read sequencers. MACS empirically models
the shift size of ChIP-Seq tags, and uses it to improve the spatial resolution of predicted
binding sites. It...

HOMER / Hypergeometric Optimization of Motif EnRichment

ty (5) M Odiscussions M Favorited 4 times
A suite of tools for Motif Discovery and next-gen sequencing analysis. HOMER contains many
useful tools for analyzing ChIP-Seq, GRO-Seq, RNA-Seq, DNase-Seq, Hi-C and numerous other
types of...

SICER

(1) M Odiscussions R Favorited 1 time
A clustering approach for identification of enriched domains from histone modification ChiP-
Seq data.

SPP

(©) ™ 0discussions
An R package for analysis of ChiP-seq and other functional sequencing data. SPP has been
designed to detect protein binding positions with high accuracy. SPP can also examine the
saturation level of...

Scripture

(0) ™0 discussions
Scripture A method for transcriptome reconstruction that relies solely on RNA-Seq reads and an
assembled genome to build a transcriptome ab initio. The statistical methods to estimate
read coverage...




MACS [Zhang et al, 2008]

1. Modeling the shift size of ChIP-Seq tags

slides 2*bandwidth windows across the genome
to find regions with tags more than mfold
enriched relative to a random tag genome
distribution

randomly samples 1,000 of these highly enriched
regions

separates their + and - reads, and aligns them by
the midpoint between their + and - read centers
define d as the distance in bp between the
summit of the two distribution

Percentage

Peak Model

—— forward tags
—— reverse tags
—— shifted tags

d=119

—-600 —400 —200 o 200 400 600

Distance to the middle




MACS [Zhang et al, 2008]
2. Peak detection

Scales the total Input read count to be the same as the total ChIP read count
Duplicate read removal

Generate signal profile
Reads are shifted by d/2 Sloig S SRmasoma
?d value is the model obtained >e—
in step 1 ) Tag shift

Tag count

Pepke et al, 2009



MACS [Zhang et al, 2008]

Slides 2d windows across the genome to find candidate peaks with a

significant read enrichment (Poisson distribution p-value based on A,
default 107)

Estimate parameter A __, of Poisson distribution
Keep peaks s1gmf1cant under A and A and with p-value < threshold

[ —— S - e el oo} ,L P . SN SRR S
0-m

w
S Y T gy R v gppe e G N N [ S QPR W W S a

thresh
11D > estimate A over diff. ranges i)

« 5 kb . — take the max

10 kb

-

full genome




MACS [Zhang et al, 2008]

3. Multiple testing correction (FDR)

Swap treatment and input and call negative peaks
Take all the peaks (neg + pos) and sort them by increasing p-values

# Negative peaks with p-value <p

FDR(p) =
(p) # Selected peaks

< FDR=2/27=0.074



MACS in summary

Step 1 : search for candidate regions that look like good peaks, to produce a
fine-tuned model of the peaks (d value) to search in Step 2

Step 2 : actual peak calling
sliding window length = 2*d

In each window : test if the region is a peak, by comparing the number of
reads in the treatment and the expected number of reads

Comparison is based on a statistical test with a Poisson distribution, keeping
only regions with p-value < threshold

Step 3 : correction for multiple testing (many windows were tested),
calculation of FDR



I Protocol

Peak calling with MACS

(stop after step 3)
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https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#peak-calling-with-macs2-

How to deal with replicates



How to deal with replicates

Analyze samples separately Merge samples prior to the peak
and takes union or intersection calling (e.g recommended by
of resulting peaks MACS) => “pooling”
Sample 1.a Sample 1.b Sample 1.a  Sample 1.b
L 1 4




IDR - Irreproducible Discovery Rate (ENCODE)

Measures consistency between replicates

Uses reproducibility in score rankings between peaks in each replicate to
determine an optimal cutoff for significance.

|ldea:

The most significant peaks are expected to have high consistency between
replicates

The peaks with low significance are expected to have low consistency

https://sites.google.com/site/anshulkundaje/projects/idr



RAD21 Replicates (high reproducibility)

IDR A_ B . Cg_
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) o s 0 20000 50000
0.5 D o e 25 #0001 28005 80000 2000650005 80000 num of significant peaks
SPT20 Replicates (low reproducibility)
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loaSianal) Rep'i Joatpeak fank) Repi num of significant peaks

() IDR doesn’t work on broad source data!



I Protocol

Combine replicate (IDR)

[ I
TN o %
@, .. ® : ) ...
® . s © ..
v .. .. o ...
'. .’ ..’
R e, o
e @ (2
o ...o
i
v
v
v
v
Peak calling (bed)
......................... AnnOtatlon


https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#4---combine-replicate-together-idr
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What is the biological question ?

& cee if you can find something in the data »



What is the biological question ?
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What is the biological question ?

Where do a transcription factor (TF) bind ?

How do a transcription factor (TF) bind ?
Which binding motif(s) (can be several for a given TF !!)
Is the binding direct to DNA or via protein-protein interactions ?
Are there cofactors (maybe affecting the motif !!), and if so, identify them

Which regulated genes are directly regulated by a given TF ?

Where are the promoters (Polll) and chromatin marks ?



What is the biological question ?

Should drive all « downstream » analyses

Will take time
to « doit all » I!!




What is the biological question ?

cell biology (eg: luciferase assay) ?
in vitro assays (eg: EMSA) ?
Proteomic (eg: mass spectrometry) ?
Transgenics ?



Discovering motifs in peaks

Motifs Annotations



Biological concepts of transcriptional regulation

Transcription factors are proteins
that modulate (activate/repress)
the expression of target genes
through the binding on DNA cis-
regulatory elements

LCo-azwator comphnx O

ANSCHoON
N BRSNON COMBBAX Tranec plion
malcn
- =

CHM Prosima TFES

Wasserman et al, Nat Rev Genet, 2004



I Transcription factor specificity
How do TF « know » where to bind DNA ?

}

. . GATTAATAGC . . . .TAGCGCGCTT. .

TF recognize TFBS with specific DNA sequences

=

TAATTA

a given TF is able to bind DNA on TFBSs with different sequences



Binding specificity

transcription factor

binding motif




From binding sites to binding motif

Collection of binding sites
used to build the Sox2 matrix

(TRANSFAC M01272)

R15133 GCCCTCATTGTTATGC
R15201 AAACTCTTTGTTTGGA
R15231 TTCACCATTGTTCTAG
R15267 GACTCTATTGTCTCTG
R16367 GATATCTTTGTTTCTT
R17099 TGCACCTTTGTTATGC
R19276 AATTCCATTGTTATGA
R19367 AAACTCTTTGTTTGGA
R19510 ATGGACATTGTAATGC
R22342 AGGCCTTTTGTCCTGG
R22344 TGTGCTTTTGTNNNNN
R22359 CTCAACTTTGTAATTT
R22961 GCAGCCATTGTGATGC
R23679 CACCCCTTTGTTATGC
R25928 TTTTCTATTGTTTTTA
R27428 AAAGGCATTGTGTTTC

Position-specific scoring matrix (PSSM)

C 2| 2 6 5 912 0 0O O Oof of 21 21 2 0O 6

MO01272 V$SOX2_Q6 Sequence logo
ate

16 sites



A o A

>mm9_chrl 39249116_3925131
gagaggaagggggagaaagagggagggggagGGTGATAGGTAGCCAGGAG
CCAATGGGGGCGTTTTCCTTGTCCAGGCCACTTGCTGGAATGTGAGATGT
AGAATGACCCAAAGAGAGCTGCCAAGACAGAGCTCTGCCCCAGGAATTGA
ACTCAAAGGGTGTCAGAAAGCAGGTGGCCTTTGTGCACCTGGCGCGGGGA
CGTGGCTCCCCTCTTCCGGCTGGTCTAGCCAGGtgcctgectgectgect
gCccGTGATCTCTGGACGCCAGTAGAGGGTTGTTGTGGGTTTGGGTGAAAC
ACGCCACCCCTGAGCTCTTCCGCGGGGCTAGCAATCTCCCCATCACCCCA

TTCGCGCTCAGAACCCCCTCAGCGé ETAACAGCAGGCCTGGTTCCCCG

_+

ChlP-seq peaks

DNA sequence

Discovered motif

A [24 54 59 065 71 4 24 9]
c [ 7 6 472 4 2 0 6 9]
G [31 7 0 2 0 1 1 38 55 ]
T [14 913 2 7 271 8 31
2_ < 7
£1- .
3 Motif logo
- o —w gg T "o 8 e e e
5 3

watbogu betkehey oZu



De novo motif discovery

transcription factor

" targetgene

Problem :
= , How can we model/describe
the binding specificity of
agiven TF ?

ﬂ

i If there is a common regulating

cis-regulatory elements factor, can we discover its motif
x4l only using these sequences ?

[
\ \
¥ ¥

!JIGA v %_GAIQ & binding motif



De novo motif discovery

Find exceptional motifs based on the sequence only
(No prior knowledge of the motif to look for)

Criteria of exceptionality:

Over-/under-representation: higher/lower frequency than expected
by chance

Position bias: concentration at specific positions relative to some
reference coordinates (e.g. TSS, peak center, ...).

_—

T T T
3 L2

position



Some motif discovery tools

MEME (Bailey et al., 1994)

RSAT oligo-analysis (van Helden et al., 1998)
AlignACE (Roth et al. 1998)

RSAT position-analysis (van Helden et al., 2000)
Weeder (Pavesi et al. 2001)

MotifSampler (Thijs et al., 2001)

... many others

Why do we need new approaches for genome-wide datasets ?



I New approaches for ChlP-seq datasets

* Size, size, size
- limited numbers of promoters and enhancers

$

* the problem is slightly different
- promoters: 200-2000bp from co-regulated genes —

¢
- peaks: 300bp, positional bias

QCOUrT eroes

* motif analysis: not just for specialists anymore !

- complete user-friendly workflows



De novo motif discovery

Case 1: promoters of co-expressed genes

cis-regulatory
elements

target gene

target gene

target gene

binding motif
(represented as a
sequence logo)

T
_—
H—‘
5145‘;}——{
ClepZ

p —
o ]
9H H
10f) (-
111

Case 2: ChlIP-seq peaks
TF binding site
_




Regulatory sequence Analysis Tools (rsat.eu

Regulatory Sequence Analysis Tools

Welcome to Yy Analysis Tools (RSAT).

'RSAT

This web site provides a series of modular computer progréms specifically designed for the detection of regulatory signals in non-coding sequences.

RSAT servers have been up and running since 1997. The project was initiated by Jacques van Helden, and is now pursued by the RSAT team.

Choose a server

New ! January 2015: we are in the process of re-organising our mirror servers into taxon-specific servers, to better suit the drastic increase of available genomes.

RSAT RSAT
243 Fungi - 9638 Bacteria + Archaea 92 Metazoa

maintained by TAGC - Université Aix Marseilles, France maintained by RegulonDB - UNAM, Cuernavaca, Mexico maintained by platforme ABIMS Roscoff, France

RSAT RSAT +iIRSAT
186 Protists ., 39 Plants

maintained by Ecole Normale Supérieure Paris, France maintained by Bruno Contreras Moreira, Spain

maintained by SLU Global Bioinformatics Center, Uppsala, Sweden

Citing RSAT complete suite of tools:

® Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J. (2011) RSAT 2011: r Yy ysis tools. Nucleic Acids
Res. 2011 Jul;39(Web Server issue):W86-91. [Pubmed 21715389] [Full text]

® Thomas-Chollier, M., Sand, O., Turatsinze, J. V., Janky, R., Defrance, M., Vervisch, E., Brohee, S. & van Helden, J. (2008). RSAT: r
Nucleic Acids Res. [Pubmed 18495751] [Full text]

® van Helden, J. (2003). y

Yy ysis tools.

ysis tools. Nucleic Acids Res. 2003 Jul 1;31(13):3593-6. [Pubmed 12824373] [Full text] [pdf]

For citing individual tools: the reference of each tool is indicated on top of their query form.

RSAT logos designed by Mauricio Guzman (http://www.altamirastudio.com/)



Peak-motifs

«fast and scalable

«treat full-size datasets
complete pipeline

eweb interface

eaccessible to non-specialists

Peak sequences
complete dataset

>mm9_chrl_3473041_3473370_+
ctgtctctctatcttgcttaataaaggat
ctctttgtattggaaattggttgtttggg
tatatcctgtgcctaatttgcatatgga

oligos_7nt_mkvS_m1

| AllgandT

' n'e 3 e © -
5 2w d

o
2583 sites.

841 sites

Motif location
scan input peaks with discovered motifs

Pradctndstes

motif position
profile

Numoar ofstes
385883

y [
‘Soquence posson rlte o po cote

Visualisation in genome browser
UCSC custom track for each motif

chrs: 122657500 | 122658000 |

Peak

Gene -

Conservation profile

oligos 7nt_mkyS_m3

- Alc

de novo motif discovery
global over-representation, positional biais, spaced motifs

positions_7nt_m1

j éTT(IIAT 10ahTe

729 sites

Comparison with collections of motifs
various metrics to calculate motif similarity

Jaspar User-provided
Uniprobe eg. Transfac
RegulonDB

Visualisation with logo alignments
Matching motifs and candidate transcription factors

oligos Tat_mkyS mt




5000

Peak-motifs: why providing yet another tool?

T T T T T T
— peak-motifs: oligo-analysis-7nt

‘ ‘ : — peak-motifs: dyad-analysis
4500 ------- e Feeneneee o menee peak-motifs: Fosmon—anal sis-7nt |----- -

| : ; peak-motifs: local-words-7nt
. fast and scalable S A e | |
. treat full-size datasets 13200 0 S S T S S
. using 4 complementary algorithms I R T R
- Global over-representation g 00
. oligo-analysis g
. dyad-analysis o 100
(spaced motifs) S

. . 2000
- Positional bias

1500
. local-words

1000

> e ¢ ‘ ;
0 10 20 30 40 50 60 70 I80 90 100
T I sequence size {Mb)
size limit of other websites typical ChIP-seq dataset

Thomas-Chollier, Herrmann, Defrance, Sand, Thieffry, van Helden Nucleic Acids Research, 2012



RSAT menu

/i RSAT
/Prokaryotes

|sl 9638 organisms

ot
New i(emsu
> view all tools
} Genomes and genes
' Sequencetools ¥
» Matrix tools ¥
} Bulld control sets

} Motif discovery

} Pattern matching

} Comparative
genomics

} NGS - ChIP-seq

} Genetic variations _
(var-tools) ¥

} Conversion/Utilities
} Drawing

} SOAP Web services

¥ Help & Contact

RSAT team

Tralning material

—} 1. Get sequences

—D

—

2. Run the analysis

3. Visualization

—} Help: tutorials,



RSAT We

b forms

RSA-tools - retrieve

<«

Tool name

Returns upstream, eam or ORF for a list of genes

Tool description

Remark: If you want to retrieve from an or that is in the EnsEMBL database, we

e Single organism Organism[ Saccharomyces cerevisiae

]

O Multiple organisms

Genes () all @ selection

Upload gene list from file

( Browse... )

[ Query contains only IDs (no synonyms)

Feature type @) CDS () mRNA () tRNA () rRNA () scRNA

Sequence type | upstream @From default To | default

@ Prevent overlap with neighbour genes (noorf)

[ Mask repeats (only valid for organisms with annotated repeats)

™ Admit imprecise positions

Sequence format | fasta B
Sequence label [ gene name B‘

- Tool parameters

/ Output

Go button (launches the analysis)

Output @ server () display () email DemO button (fi" in the fOl'm f0r
test purposes)

@ MANUAL TUTORIAL MATL—

Help



I Protocol

e Motif analysis

A
|<I<I<I<I<I

>
=]
=]
S
=4
©
=
S
=}

Motif discovery



https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#motif-analysis-

Motif discovery: frequency

Observed 6-mer
occurrences computed
from:

6-mer (e.g.AACAAA )

Test sequences

Expected 6-mer
occurrences computed
from:

Background sequences
(when available)

OR

Theoretical k-mers
frequencies from test
sequences

=» Computation of p-value (binomial) and E-value
(multi-testing correction)

Observed vs expected 6-mer
occurrences

Observed (test sequences)

0 1000 2000 3000 4000 5000 6000 7000
Expected occurrences (5th order Markov model)



Motif discovery: positional bias

occurrences

Observed occurrences per window

Windows 50 nt

Expected occurrences per window following an

homogeneous model

11 7-mer {e.g. AACAAAG ) Windows 50 nt

e e L e e
v +T—I— L
B3 3 3 3
- ! L] = - ‘5 $ -
e »0
: - RN AR
position position
Observed occurences per window Observed vs expected 6-mer occurrences
| 6-mer {e.g. AACAAA | ?
" g - o |
o et 2| !
' ! =z o - | .-
3 £ 1 5
T = " ., S
E - - | ‘4
& r 4
o oodl |
o a o >
3 | " 4

e . rw oo o a0 o

Expected occurrences in whele sequences

position-analysis

local-words



Direct versus indirect binding

ChlIP-seq does not necessarily reveal direct binding: The
motif of the targeted TF is not always found in peaks!

)
L e

Direct binding Indirect binding




Annotating peaks

Annotations



Are peaks biased towards any genomic features?

How are the peaks distributed on the chromosomes?

Are there genomic features (promoters, intergenic, intronic, exonic regions)
enriched in the peaks?

How are the peaks distributed compared to gene structures (TSS, TTS, introns,
exons)?

How are they distributed compared to the genes?

<=2000 bp




Various tools available

e ChiIPseeker (Bioconductor) https://goo.gl/BemEsw
e bedtools annotate : http://bedtools.readthedocs.io
e HOMER annotatePeaks.pl

Warning : rely on the organism annotation and assembly version

=> not all organisms supported by all programs !


http://bedtools.readthedocs.io

Which are the closest genes?

« gy
Oy 2 HOMER

@D
< k @ -~ Software for motif discovery and ChlP-Seq analysis

-~

HOMER is a well-maintained suite of tools for functional genomics sequencing data
sets. It can perform peak-calling and motif analysis, but we will use it for
annotation of the peaks only.



What are the genes associated to the peaks ?
Are there some functional categories over-represented ?

[ ChIP-seq peaks ]—P [ Genes ]—P [ Ontology terms ]

GO Molecular Function
GO Biological Process
Disease Ontology
Pathways




I Various tools available

These tools work with gene lists

GSEA: http://www.broadinstitute.org/gsea
gProfiler: http://biit.cs.ut.ee/gprofiler/gost
GSAnN: https://gsan.labri.fr/

HOMER: http://homer.salk.edu/homer
DAVID: http://david.abcc.ncifcrf.gov

These tools work with regions (BED files)

e EnrichR: http://amp.pharm.mssm.edu/Enrichr/enrich
e LOLA (Bioconductor) https://goo.gl/pWDZEs
e GREAT: http://great.stanford.edu/public/html/



http://www.broadinstitute.org/gsea
http://biit.cs.ut.ee/gprofiler/gost
https://gsan.labri.fr/
http://homer.salk.edu/homer
http://david.abcc.ncifcrf.gov
http://amp.pharm.mssm.edu/Enrichr/enrich
https://goo.gl/pWDZEs
http://great.stanford.edu/public/html/

I Protocol

Associate peaks to closest genes

A
|<I<I<I<I<I

q4



https://github.com/IFB-ElixirFr/EBAII/blob/master/2021/ebaiin1/chip-seq/hands-on/hands-on.md#peak-annotation-

Now that we have the genes,

Are there some functional categories over-represented ?

—P[ Ontology terms ]

GO Molecular Function
GO Biological Process
Disease Ontology

A Pathways




HOMER [Heinz et al., Mol Cell 2010]

Gene Ontology Analysis of Associated Genes: annotatePeaks go option

# of # of
G Target|# of |# of
P-value |LogP Term GO Tree GO ID incncs Genes|Total |Target/Common Genes
in Genes|Genes
(Term
Term
. biological .
2.912¢-26|-5.880e+01 immune response process GO:0006955 349 35 18091168 |1110,Cd14 Malt1,Ccl2,Ccl7 Ifih:
X biological
3.912¢-26|-5.850e+01 immune system process rocess G0O:0002376 679 |45 18091|168 |S100a9,Egr1,1110,Cd14 Maltl,C
’ o molecular : i
1.823e-25|-5.696e+01 |cytokine activity function GO:0005125 178 [27 18371|167 |Gdf15,1110,Csf2,Ccl9,Ccl2,Celi
biological =
3.372e-23|-5.174e+01 |defense response process GO:0006952 430 |35 18091|168 |1110,Cd14 Malt1 Nuprl Ccl2,Cc

Genome Ontology:
annotatePeaks genomeOntology option

Total Input Regions (0.936444051404582.pos): 25961, 33798473 bp

Looking for Enriched Genomic Annotations:

P-value |Log P-value|Annotation Ann Group [#fc overage(bp)|AvgF 1301]|Overlap(#peaks)|Overlap(bp) [Expected Overlap(bp, gsize=2.00e+09)|Log Ratio Enrichment|Log P-value(+ underrepresented) P-value
1e-3660 |-8428.50  |cpglsland basic 28691 [21842742  |761 9426 5545349 |369125 2.71 -8428.50 0.00e+00
1e-2673 |-6155.47  |promoters basic 44477 |30002652  |674 8579 5141062 |507021 2.32 -6155.47 0.00e+00
1e-1027 |-2363.56  |utr5 basic 57703 |5423448 93 7002 1516346 91652 2.81 -2363.56 0.00e+00
le-381 |-876.84 exons basic 503529 |73292986  |145 9092 3171853 |1238595 0.94 -876.84 0.00e+00
le-341 |-783.19 protein-coding basic 483461 |66805131 138 8609 2876255  |1128955 0.94 -783.19 0.00e+00
le-105 |[-239.83 coding basic 407555 |43508461 106 6592 1482965 735259 0.70 -239.83 6.94e-105
le-71 |-162.42 GC_richlLow_complexitylLow_complexity [repeats 13724 |552081 40 2716 120042 9329 2.55 -162.42 2.8%e-71
le-60  |-136.15 miscRNA basic 11332 (4544003 400 592 287477 76790 132 -136.15 7.46e-60
3.14¢-20[-44.91 tts basic 44477 (28239519  |634 1124 718919 477226 0.41 -44.91 3.14e-20
1.21e-10}-22.84 CGGnlSimple_repeatlSimple_repeat repeats 1241 71601 57 313 15761 1210 2.57 -22.84 121e-10
1.06e-09/-20.66 C-richILow_complexitylLow_complexity [repeats 9534 1007297 105 673 53335 17022 1.14 -20.66 1.06e-09




Species Assembly Human: GRCh37 (UCSC hg19, Feb/2009)
Mouse: NCBI build 37 (UCSC mm9, Jul/2007)
Mouse: NCBI build 38 (UCSC mm10, Dec/2011)

G RE A I ™) Zebrafish: Wellcome Trust Zv8 (danRer7, Jul/2010)  Zebrafish CNE set
Can | use a different species or assembly?
Testregions g BEDfile: Choisissez un fichier  Aucun ...hoisi

BED data:

What should my test regions file contain?
How can | create a test set from a UCSC Genome Browser annotation track?

Background @ Whole genome
regrons BED file: | Choisissez un fichier Aucun ...hoisi

BED data:

When should | use a background set?
What should my background regions file contain?

Association rule

Show settings »
settings 9

Note: Only human (hg19,hg38), mouse (mm9, mm10) and zebrafish (danRer7) genomes are supported



GREAT

Associating genomic regions with genes

GREAT calculates statistics by associating genomic regions with nearby genes and applying the gene annotations to the regions.
Association is a two step process. First, every gene is assigned a regulatory domain. Then, each genomic region is associated with all
genes whose regulatory domain it overlaps.

© Basal plus extension

ir N |
et

—— )

L )
f 1

Two nearest genes

1

I}
1

r
l_,'

Single nearest gene

ir i |
—

—
e |

r Gene Transcription Start Site (TSS)

Proximal: 5.0 kb upstream, 1.0 kb downstream, plus Distal: up to | 1000.0 kb

Gene regulatory domain definition: Each gene is assigned a basal regulatory domain of a
minimum distance upstream and downstream of the TSS (regardless of other nearby genes).
The gene regulatory domain is extended in both directions to the nearest gene's basal
domain but no more than the maximum extension in one direction.

within 1000.0 kb

Gene regulatory domain definition: Each gene is assigned a regulatory domain that
extends in both directions to the nearest gene's TSS but no more than the maximum
extension in one direction.

within 1000.0 kb

Gene regulatory domain definition: Each gene is assigned a regulatory domain that
extends in both directions to the midpoint between the gene's TSS and the nearest gene's
TSS but no more than the maximum extension in one direction.

Note: Only human (hg19, hg38), mouse (mm9, mm10) and zebrafish (danRer7) genomes are supported
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Other analyses

H3K4me3 H3K36me3 H3K27me3

e C(Clustering peaks [Posivesend s
(Deeptools, HOMER, seqMINER) Transcribed

Negative strand transcripts

== i Bivalent loci

Silenced

Weak/Inactive loci

5kb T +5kb

1SS

Ye et al, 2011

The darker the red the higher the read enrichment



Other analyses

ReMAP (http://tagc.univ-mrs.fr/remap/)
Is my peak dataset enriched for known TF peaks?

About  Contact

Home " _ .
ReMap Enriched TFs in intersection
An integrative ChlIP-seq analysis of regulatory elements

Transcription Factors Cell Types Annotation Tool Downloads o [ -
Welcome to ReMap an integrative analysis of transcription factor ChlP-seq experiments publicly available merged with
the Encode dataset. Here we propose an extensive regulatory catalogue of 8 million transcription factor binding sites NR2F2 _ 0.837
from 237 transcription factors (TFs). Among those factors 50 TFs are common with Encode, 82 TFs are Public specific
and 105 Encode specific. The results of this analysis is available to browse or download either for a given transcription ESRL _ 0.482
factor or for the entire dataset. Interactive UCSC Genome Browser tracks are also available.
o3 _ s
R - 0438
Common
TFs: 50 BRD4 0.4
Public —
TFs: 82
57% Public 89% Encode ERG - 0.382
sites overlap sites overlap
Encode Public
St - 0368
0 0.25 0.5 0.75 1 1.25 1:5 1.75 2 2.25

Encode
TFs: 105



http://tagc.univ-mrs.fr/remap/

|ldentification of Super-Enhancers from ChlP-seq
peaks with ROSE [Loven et al., Cell 2013]
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https://bitbucket.org/young_computation/rose



Conclusions
atelier Chip-Seq

Ecole de bioinformatique AVIESAN-IFB 2019

Qviesan

lllllllllllllllll

pour les sciences de la vie et de la santé



Bilan du pipeline ChIP-seq
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Beyond ChIP-seq : ChlP-exo
X € + &

crosslink sonication antibody exonuclease

B 111000 111100 111200 111300 111400 111500 111600

ChiIP-exo ChlP-chip

ChIP-exo reads (x10°%)

Rhee, H. S., & Pugh, B.F.(2011).



Beyond ChlP-seq

Experimental techniques

X & +~

crosslink sonication antibody

Improvement aimed

higher resolution => 300bp to 1bp

Scale 200 basesh
i3 | 45,496,000 | 45.496.100 |
178948 IMRA0_GR pesks fro

MR90_GR_peaks

19038

45,406,200 |

S normalized per

10M reacs

4 hg1e
45.496.300 | 45.496.400 |




Beyond ChlIP-seq : ChIP-nexus

Experimental techniques

>< e /L @ | CRITRER

T
crosslink sonication antibody exonuclease barcode
Improvement aimed

Get rid of PCR artifacts

20 basosh~
m”.lll.,LA""Z?ST‘#'F‘lIACCALLAu}AuuA "};{A“- L|.“(’f%’&?&au;.uuf'i”f'PAlAAAAAA
65762 RepZ IMRS0 ChiP-ax0 pos strand normalzed per 10 reads
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Beyond ChlIP-seq : native ChIP

Experimental techniques

X & +F %X

eresshink  _sonicatien antibody endonuclease

Improvement aimed

Avoid formaldedyde crosslinking

* Formaldehyde crosslinking affects preferentially protein-protein interactions.

* Crosslinking could be the cause of hyper-signaling regions in highly transcribed
sites.



Beyond ChlIP-seq : native ChIP

= ChlIP-seq
A X-ChiP B Native ChIP ¢ CUT&RUN
) (no crosslink)
Formaldehyde Native protein-DNA
crosslmk |nteractvoos
Somcanon MNase cleavage Antibody-directed

MNase deavage

W»!l'\@b* >0 J@}ﬁ.@y\,

Immunoprecipitation

» Protein A-MN
Bead™ R‘/ Antibody ﬁ Released DNA ° elir:xs»on o
A\ ./ N fragment
b4 TP
No crosslink No crosslink

CUT&RUN uses the antibodies to guide the cutting activity of the MNase enzyme
rather than physically separate wanted from unwanted chromatin fragments

He and Bonasio, Elife, 2017



Beyond ChIP-seq : low-input and single-cell

Experimental techniques

T

crosslink sonication antibody

Improvement aimed

Reduce the amount of starting material (precious samples)

Rare cell types

* Low-input: Optimized ChlP-seq protocols => 100-500 cells
Dahl & Gilfillan, Briefings in Functional Genomics, 2017

* Single-cell ChIP-seq : Only one proof-of-concept study, very low coverage

Rotem et al, Nature Biotechnology, 2015
More recent proof-of-concept

Grosselin et al, Nature Genetics, 2019



Beyond ChIP-seq : Cut&TAG (2019)

CUT&RUN CUT&TAG
Cleavage under targets and Cleavage under targets and
release using nuclease tagmentation

- Cleave adjacent DNA by MNase -+ Cleave near antibody site by Tn5

- No crosslinking - No crosslinking
+» Low background - Low background

-+ Include adaptor ligation
Signal profiling at equal read depth from Kaya-Okur et al., 2019

CUTATAG JCUTERUN

CTCF H3K4me1

- Adapted for single-cell
Antibody to target protein

Protein A (pA)

Anti-rabbit antibody (increase pA tethering)

Hyperactive transposase 5 (Tn5) with adaptors

=
|
” Micrococcal Nuclease (MNase)
@




Beyond ChlIP-seq : Cut&TAG (2019)

Nawre —<4 X0\ -
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penAccess | Publivhed: 25 April 2019 a

CUT&Tag for efficient epigenomic
profiling of small samples and single cells

Dissociated ;
Hatice $. Kaya-Okur, Steven L We, Christine A, Codoma, Eica S, Pledger, Terri D, Bryson, Jorja G celis
Henikoff, Kami Ahmad & Steven Henkoft ®

Noture Communicotions 10, Article number: 1930 (2019)  Downioad Cration £
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Aggregate “ I | l‘

Cellular read count

Single cells

Low background => 3 Million reads sufficient for human....



ATAC-seq

Assay for Transposase-Accessible Chromatin with highthroughput sequencing



Chromatin accessibility assays

*Chromatin accessibility is the degree to which nuclear
macromolecules are able to physically contact
chromatinized DNA and is determined by the occupancy

FAIRE

and topological organization of nucleosomes as well as T
other chromatin-binding factors that occlude access to DNase
DNA (Klemm et al, 2019) P Y B &Wu } B B
*Open chromatin regions contains generally T@Z%J Lw: - ,—@
transcriptionally active genes Binss e G
il sl alh (1| | ]
e alln all I alle all
. 70
*The accessible genome comprises ~2-3% of_total DNA | ulillnlin. Rias
sequence yet captures more than 90% of regions bound by |
ATAC
TFs (Thurman et al, 2012) R 1 [ P (1] 111 [ P o
Figure 1 Schematic diagram of current chromatin accessibility assays performed with typical experimental conditions. Representative

DNA fragments generated by each assay are shown, with end locations within chromatin defined by colored arrows. Bar diagrams

*Chromatin accessibility is measured by quantifying the e s sona b fom esch sy acoss the e reion. Tre ootonnt creted by s wansciption focor (1) shown
susceptibility of chromatin to either enzymatic
methylation or cleavage of its constituent DNA

*Chromatin accessibility assays (non exhaustive list)
FAIRE-seq, DNAse-seq, MNAse-seq, ATAC-seq



Chromatin accessibility assays

5007 -@- ATAC-seq data
ATAC-seq publication
400~
DNase-seq data
ATAC-seq has become the most < 3004~ FAIRE-seq data
widely used method to detect and é MNase-seq data
analyze open chromatin regions Z 200~
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*Buenrostro et al, 2013

*ATAC-seq is a method for determining chromatin accessibility
across the genome

*Transcription factor binding sites and positions of nucleosomes
can be identified from the analysis of ATAC-Seq

*Advantages of ATAC-seq over other chromatin accessibility
assays:

*The sensitivity and specificity are comparable to DNase-seq but superior
to FAIRE-seq

Straightforward and rapidly implemented protocol. ATAC-seq libraries
can be generated in less than 3 hours

*Low number of cells required (500 - 50,000 cells cells)
*single-cell ATAC-seq (scATAC-seq) protocol (Cusanovich et al, 2015)



ATAC-seq process




ATAC-seq

A Tn5
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-seq

*ATAC-seq protocol utilizes a hyperactive Tn5
transposase to insert sequencing adapters into
open chromatin regions

*In a process called "tagmentation", Tn5
transposase cleaves and tags double-stranded
DNA with sequencing adaptors

*No additional library prep is needed

*Expected results are enrichments of sequenced
reads in open chromatin regions as closed

chromatin regions, DNA regions bound by TFs or

wrapped around nucleosomes should be
protected from Tn5 cleavage activity.

Tightly packed, closed
Transcriptionally inactive

Loosely packed, open
Transcriptionally

chromatin active chromatin
- bbb © ©. ©.
Hyperactive Q
transposase A
homodimer Adaptor Simultaneous fragmentation
DNA and tagging of accessible DNA

- D000 @ © @

Purify fragmented DNA and PCR
amplify using tag sequence

Next-generation
sequencing

4
ATAC-Seq 31
Peaks (kb) 1 L

Sequencing peaks
corresponding to
L open chromatin




ATAC-

O Transcription factor

NFR fragments
e Nucleosome

* Paired-end sequencing so that by S
looking at the distance between the SRS

—
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| ——
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— —
Footprint

fragments —
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ATAC-seq process




Analysis of ATAC-seq data

* Overall analysis resemble ChIP-seq data
analysis

 Description of particularities of ATAC-seq
data analysis

Advanced analysis

Motif

enrichment
analysis

5 Meta |
profiles /

. Clustering |

Nucleosome

positioning

Differential

analysis

Footprinting

analysis




Analysis of ATAC-seq data

e Some cleaning steps are required for
ATAC-seq. For example:

> A large percentage of reads are derived
from mitochondrial DNA. These reads are
removed as mitochondrial genome is generally
not of interest.

> Omni-ATAC (Corces et al, 2017)

Advanced analysis

Motif
enrichment
analysis

Meta
profiles /
Clustering |

Nucleosome

positioning

Differential

analysis
Footprinting
analysis




Analysis of ATAC-seq data

- Motif | [ :

] Differential
enrichment Ivei
] ) _ analysis
ChIP-seq ATAC-seq analysis
G) Nuclosewes JecRuriy Piidn el — — - -
Rousm coslie [ Pdogter PPDP~~ DD~~~y Meta
ﬁivnAseLa[yu\‘m\L igoiion. S ) )
: y — | Tt . Footprinting
b A AN L i profiles / |
\:IE_L — Wr\/%\@a\x\/\wm ) .
"] o BOLT O~ r i Clustering analysis
2 e i e - J L _l
- f T Nucleosome
ouotus) bilﬁlﬂ site —% o— 5 o— N -
positioning

Adapted parameters for peak calling (MACS2) : --shift 75 --extsize 150 ~-nomodel -B --SPMR --keep-dup all —call-summits



Analysis of ATAC-seq data

Advanced analysis

Motif
enrichment
analysis

Meta
profiles /
 Clustering

Nucleosome
positioning

Differential

analysis
Footprinting
analysis




analysis

* Tn5 cuts in open chromatin regions

* DNA is protected from cleavage at position
of TF binding creating a “notch” in ATAC-seq

signal
* Footprinting analysis identifies TF activities
> Height of the notch reflects TF activity

> Compare TF activity between different
conditions

'R D

B D

Insertions

, Background

| B ..

| ..

Motif Center

Corces et al, 2019



analysis

* Volcano plots showing differential TF binding activity as predicted by TOBIAS footprinting
analysis in ATAC-seq data of NKp, iNK and mNK from Shin et al. (c) iNK vs NKp; (d) mNK vs
NKp; (e) mNK vs iNK.

* Each dot represents a TF

* TFs which activity is changing between the two compared developmental stages are colored
(see color legend below volcano plots)
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Figure: Zhang et al, 2021
Data: Shih et al, 2016



Atelier ChIP-seq: tour de table des données

Les questions qui pourraient moduler le pipeline d’analyse
Narrow peak ou broad peak ?

Paired-end ou single-end ?

Disponibilité du génome de référence (partie annotation) ?
Utilisation de spike-ins

Qualité de l’assemblage du génome ?



