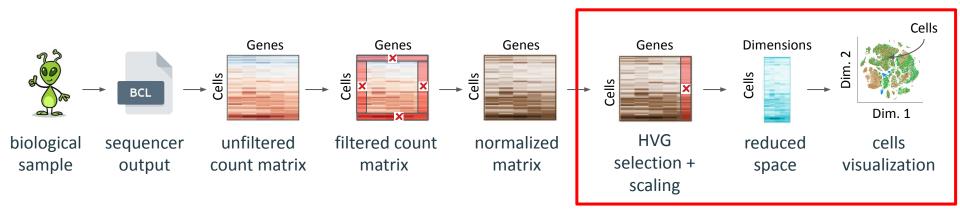


scRNA-seq: visualization

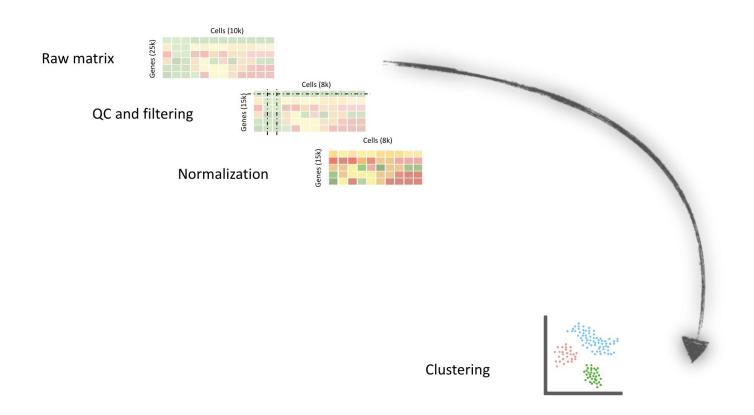
Bastien Job, Gustave Roussy, Villejuif Nathalie Lehmann, Institut Pasteur, Paris Audrey Onfroy, Institut Mondor, Créteil

scRNA-Seq pipeline overview

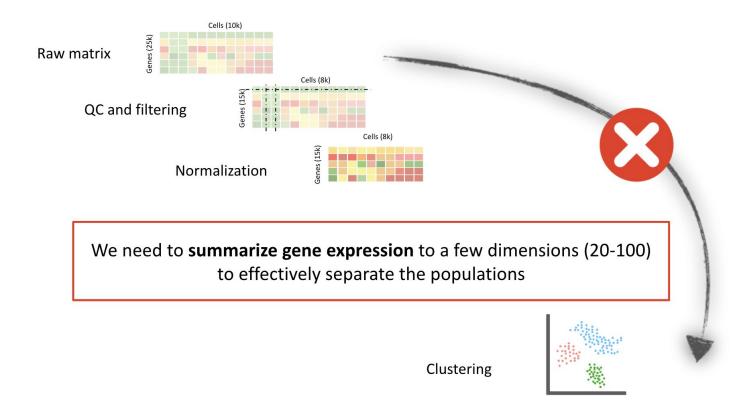


We want a visual summary of thousands cells' gene expression.

How do we get to data visualization and clustering?



How do we get to data visualization and clustering?



Why an intermediary step is necessary?

scRNA-Seq data are sparse

> 70 % of the expression matrix is 0 : **not very informative**

1	2	31	2	9	7	34	22	11	5
11	92	4	3	2	2	3	3	2	1
3	9	13	8	21	17	4	2	1	4
8	32	1	2	34	18	7	78	10	7
9	22	3	9	8	71	12	22	17	3
13	21	21	9	2	47	1	81	21	9
21	12	53	12	91	24	81	8	91	2
61	8	33	82	19	87	16	3	1	55
54	4	78	24	18	11	4	2	99	5
13	22	32	42	9	15	9	22	1	21

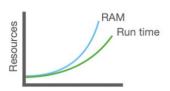
1	*:	3	*:	9	*	3		*	20
11	5	4	2					2	1
	10	1	10	-0	•	4		1	100
8	12		100	3	1	83	44		*
	81		9		×	1	8	17	*8
13	21.		9	2	47	1	81	21	9
+	76		40	40	se.	ÿ.	¥.	\$1	91
8	IS.	à.	2	19	8	16	2	7	55
54	4			ķ.	11	į.	23	į.	93
	(s)	2	-	100			22		21

prop(expr mat == 0)

Data are noisy

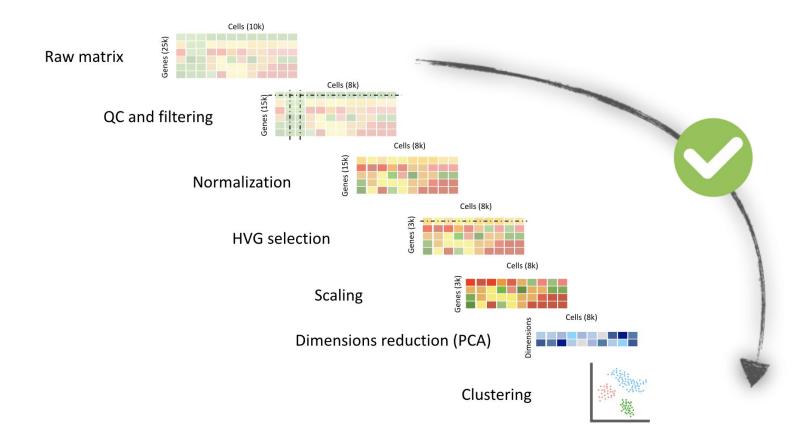
Some genes are more informative than some other. There is **biological / technical noise** in gene expression.

Computational time and ressources

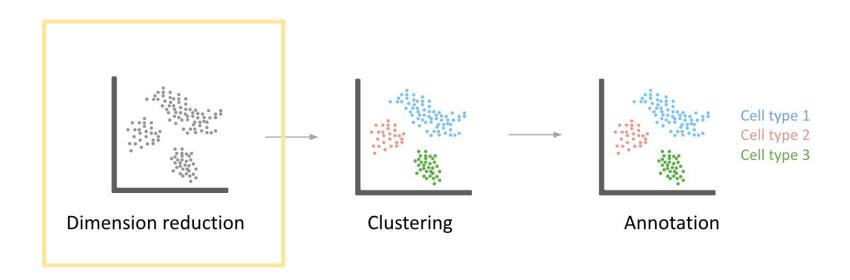


We will summarize genes expression in few dimensions, before building the 2D projection. 5

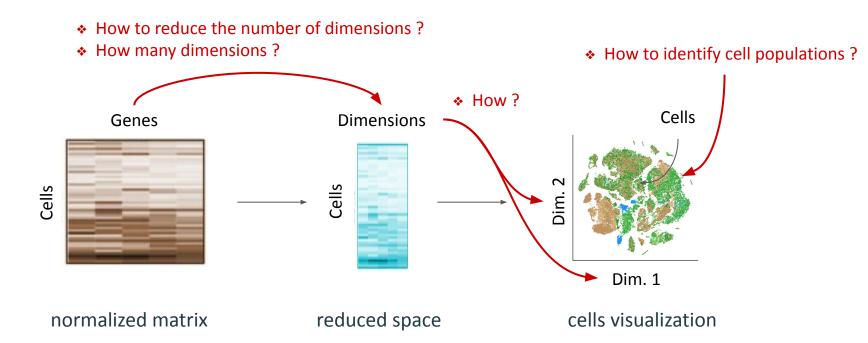
The right way to get to data visualization and clustering



Our analyses goals



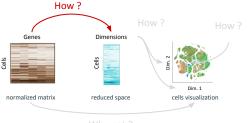
Challenges



We want a <u>visual summary</u> of thousands cells' gene expression.

Dimensionality reduction

Overview



Why not

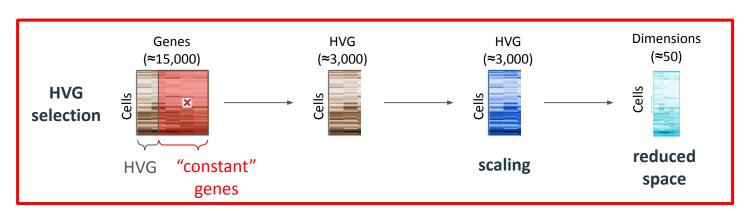
Commonly used dimensionality reduction methods

- PCA Principal Component Analysis
- BFA Binary Factor Analysis
- ICA Independent Component Analysis
- LSI Latent Semantic Indexing
- LDA Linear Discriminant Analysis

• ...

Important parameters

- **information** : number of <u>variable</u> genes (HVG)
- number of dimensions to generate (signal / noise)
- randomness: random seed
- convergence criteria

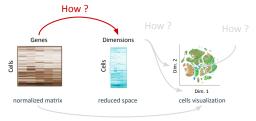


Dimensionality reduction

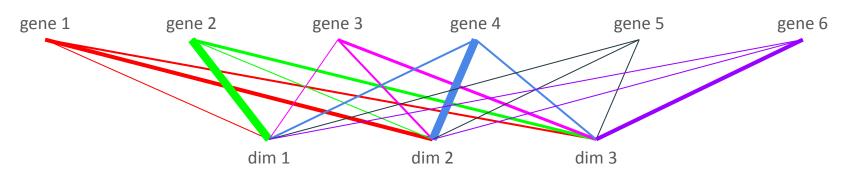
Principal Component Analysis - principle

• Input : X (≈ 2 000 - 5 000) HVG with scaled expression levels

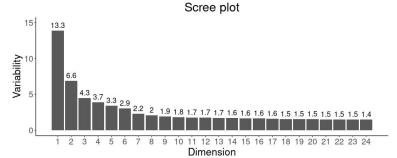
• Goal: Group genes by dimensions when they have similar expression across cells



Why not



- Output: **Z** (≈ 50 100) dimensions "Principal Component"
- Each PC summarizes a certain amount of the input data variability
 - First PC recapitulates the most part of information
 - Last PC can be considered as noise



Dimensionality reduction

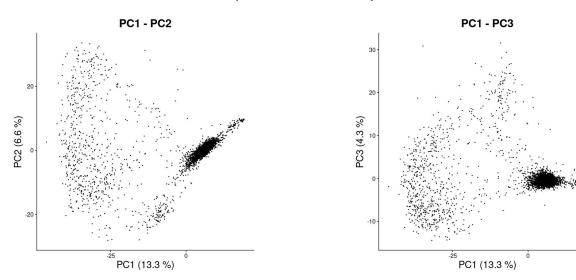
Principal Component Analysis - visualization

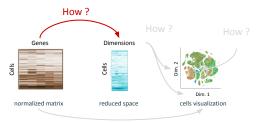
• Input : X most variable genes

• Goal: Group genes by dimensions when they have similar expression across cells

• Output: **Z** dimensions "Principal Component"

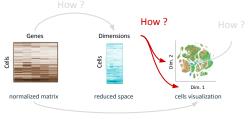
• Each PC summarizes a certain amount of the input data variability





Why not?

2D space for cells visualization



Why not

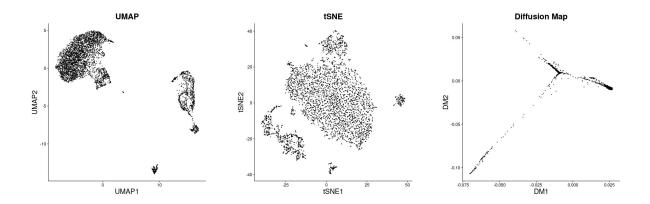
Commonly used 2D space

- UMAP
- tSNE
- Diffusion Map

• ..

Important parameters

- **input information** : number of dimensions
- cells **neighborhood**: number of neighbors, perplexity, distance method, ...

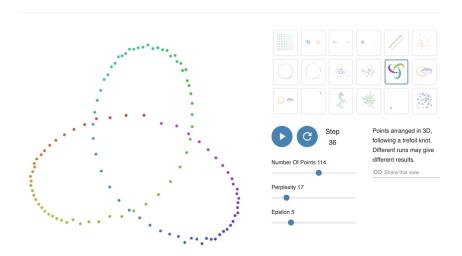


The same cells can be represented using **different 2D spaces**. Do not make to many interpretations from the 2D space, it is an **over-simplified representation** of cells.

There are an infinite way to represent our data into 2D

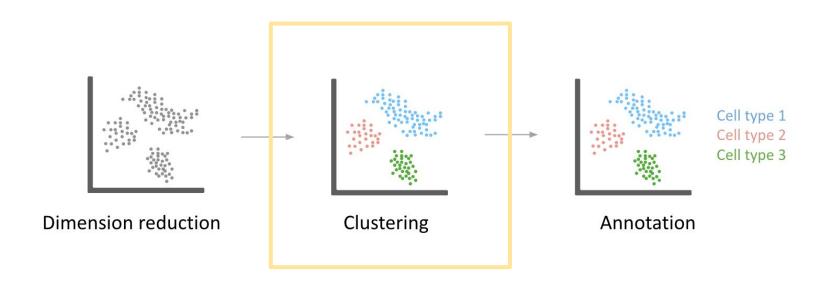
How to Use t-SNE Effectively

Although extremely useful for visualizing high-dimensional data, t-SNE plots can sometimes be mysterious or misleading. By exploring how it behaves in simple cases, we can learn to use it more effectively.

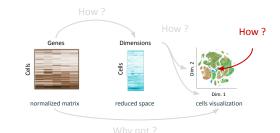


https://distill.pub/2016/misread-tsne/

Our analyses goals



Clustering

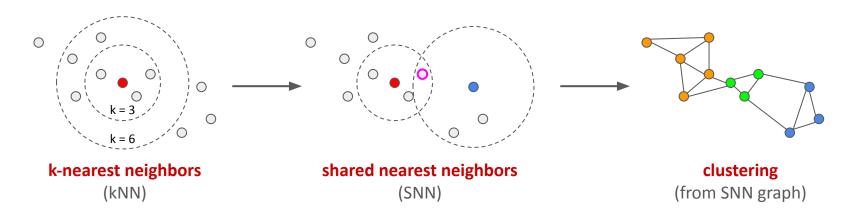


Commonly used methods

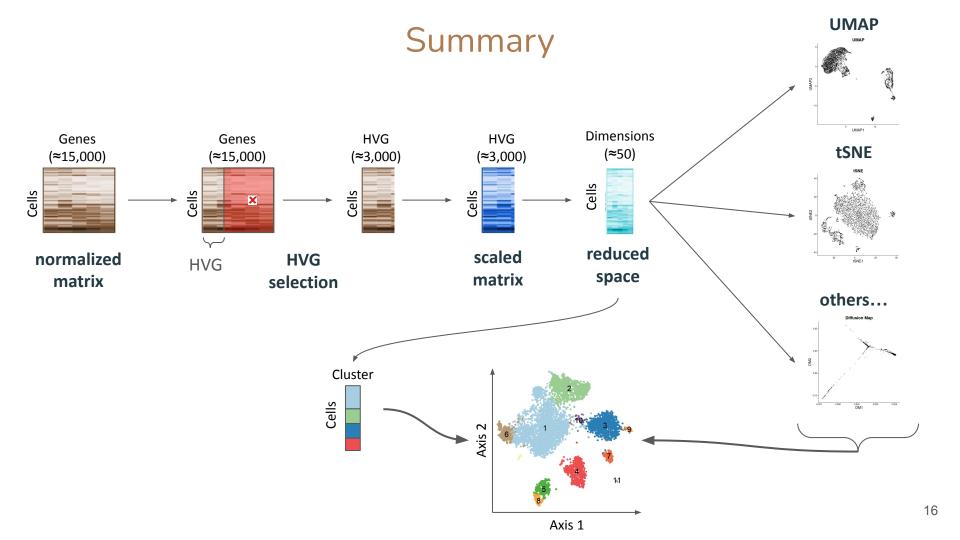
- Louvain clustering
- Leiden clustering
- k-means
- ..

Important parameters

- **input information** : number of dimensions
- cells **neighborhood** parameters : number of neighbors, distance measurement method, **resolution**...



Clustering is made on expression matrix or reduced space, <u>not</u> on the 2D projection. The 2D projection is not a clustering. A clustering is an **annotation**.



Take Home Messages

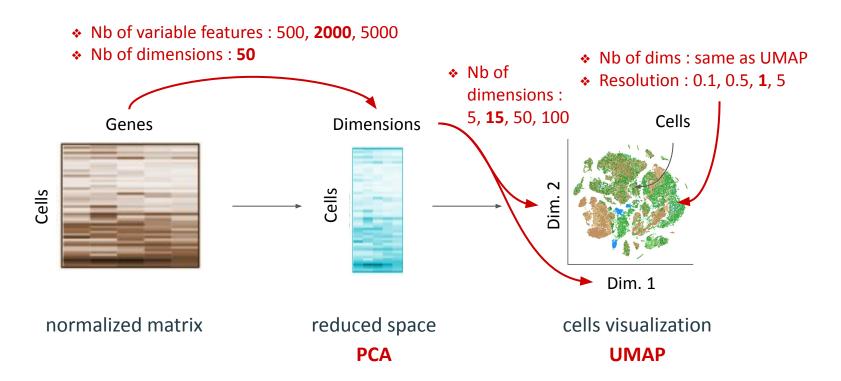
- The **number of variable genes** impact the PCA, thus the 2D space. It depends on the expected number of cell populations in the dataset.
- Number of dimensions = amount of information (not enough < - > noisy data)
- **UMAP** is suited to visualize several cell types and their **global** transcriptomic profile
- tSNE is suited to visualize sub cell types and their <u>local</u> transcriptomic particularity
- **Diffusion Map** is suited to visualize cell **differentiation** data
- The **resolution** impacts the number of clusters : not enough clusters / not biologically interpretable clusters

Advice:

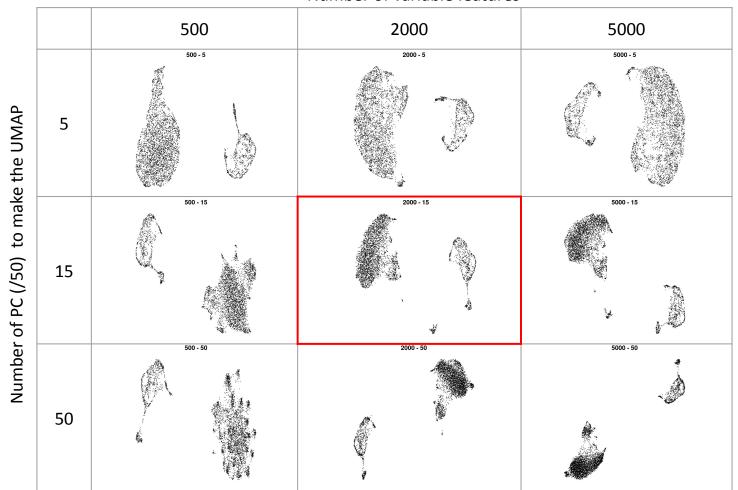
- 1. Make the analysis with all default settings :
 - 2000 HVG
 - **15** PC to generate a UMAP (or tSNE)
 - Resolution 1 for the clustering
- 2. Identify your cell populations
- 3. Change the settings to make the representation showing what you identified

The goal is to generate a quick representation for your cells. Run your favorite analyses and represent results on the representation. Do not make to many interpretations from the 2D representation itself.

Let's go to practice



Number of variable features



Resolution

