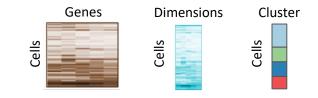


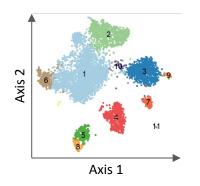
alliance nationale pour les sciences de la vie et de la santé

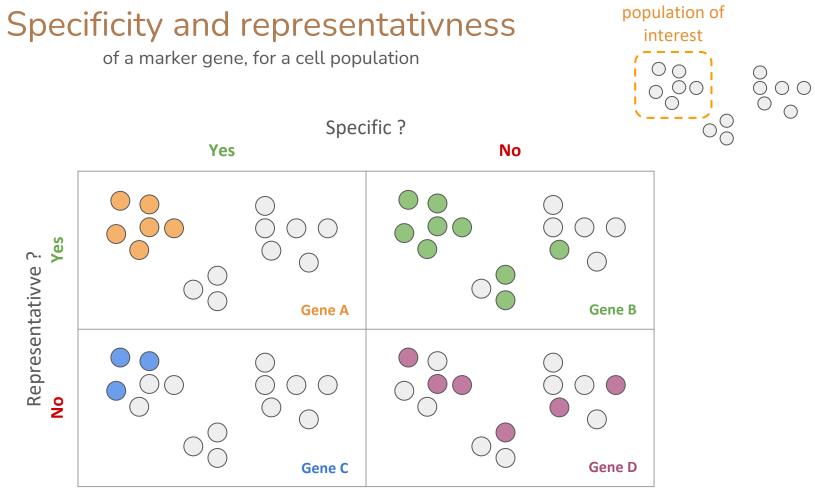
scRNA-seq : cell type annotation

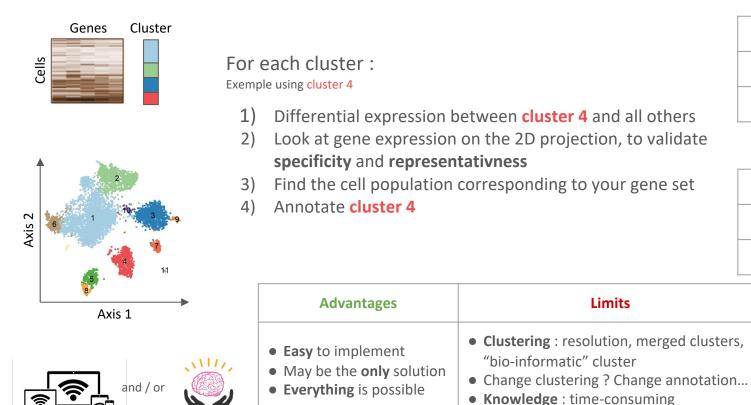
École de bioinformatique AVIESAN-IFB-INSERM 2022

scRNA-Seq pipeline overview

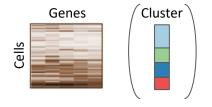

What is available ?


We have :


- gene expression matrix : for each cell, gene expression is available
- reduced space : gene expression matrix is summarized in N dimensions
- clustering : each cell belongs to a specific cluster
- **2D space** : cells can be visualized on a 2D representation
- biologist knowledge
- internet connection



How to annotate cells for cell type?


Method 1 : Manual cluster annotation using differential expression

Cluster 1	A, B, C	
Cluster n	X, Y, Z	
Ļ		
Cluster 1	Cell type A	
Cluster n	Cell type X	

How to annotate cells for cell type?

Method 2 : Automatic annotation using reference markers

Cell type A	A, B, C
Cell type X	X, Y, Z

Steps :

1) Find a good marker gene reference (PanglaoDB, CellMarker, CancerSEA...)

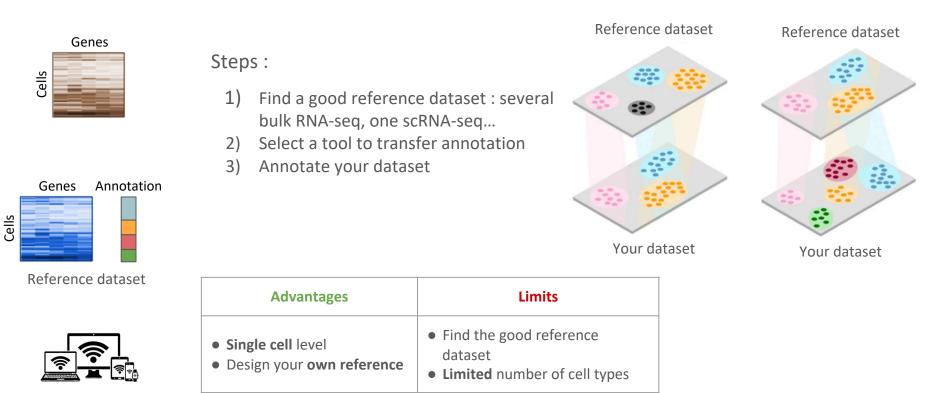
Algorithm

M

Scoring Function

f(E, M)

2) Select a tool / model : classifier, scoring function ...



1) Annotate your dataset

Advantages	Limits
 Single cell level is possible Design your own reference 	 Find the good reference markers Cell types arborescence Limited number of cell types : all cells are annotated, or "unknown" is possible ?

How to annotate cells for cell type?

Method 3 : Automatic annotation using reference dataset

Take Home Messages

Method	Advantages	Limits
Manual cluster annotation using differential expression	 Easy to implement May be the only solution Everything is possible 	 Clustering : resolution, merged clusters, "bio-informatic" cluster Change clustering ? Change annotation Knowledge : time-consuming
Automatic annotation using reference markers	 Single cell level is possible Design your own reference 	 Find the good reference markers Cell types arborescence Limited number of cell types : all cells are annotated, or "unknown" ?
Automatic annotation using reference dataset	 Single cell level Design your own reference 	 Find the good reference dataset Limited number of cell types : all cells are annotated, or "unknown" ?

Advice :

- 1. Use manual cluster annotation to identify quickly your cell populations
- 2. Identify good markers for each cell populations \rightarrow your reference markers
- 3. Use automatic cell annotation using your set of marker \rightarrow your reference dataset
- 4. Use your references to annotate new dataset