
Initiation à Git

J. Seiler

FAIR Bioinfo 2024 - Strasbourg

https://creativecommons.org/licenses/by-sa/4.0/


2

Plan

What is Git ?
Key concepts
How to use the Git command ?
The Burger project

Create a repository
Add files
Commit changes
Modify files
Check status
Revert changes
Use branches



3

This is an interactive training

▪ You will learn to use git by working with it

▪ You only need a web browser and an Internet 
connection to follow this training.

▪ Each time you see this icon, you will have 
something to do



4

What is git ?

git is

a command line tool command line(git)
developed in C, Bash and Perl
Open Source (GNU GPL 2)

a version control system - track changes to a file/folder or a set of 
files/folder
- navigation in the history of modifications
- sharing of changes

decentralized no need for a server

and distributed multi-user



5

Where does git come from ?

Git was invented in 2005 by Linus Torvalds.

Git is the successor of many similar tools like cvs or subversion.

git means « unpleasant person »
(Linus like to name his projects after himself…)



6

Why would I need a decentralized version control system?

A few examples
▪ Follow the steps of modification of a program

▪ Test a complex change and be able to go back easily

▪ Working with others on a project

▪ Invite collaborators on a project

▪ Contribute to OpenSource projects



7

How to use git ?

▪ git is a command line tool

▪ the command is git

▪ you can use it from shell terminal



8

How does git work ?

For each project you track with git, git maintains a repository at the root of the 
project in a .git folder

The git command let you interact with this repository.



9

Working directory vs. Repository

Working directory

Git repository

.git

Your working folder contains the files and folders that make up 
your project.

Git can modify these files to update them or present them to 
you at different versions of the project through its index.

Your git repository contains the entire history of your project. All 
file versions, all modifications, etc.

This is the .git folder at the root of your working folder.



10

A Git repository will allow you to track the history of changes in your project.

Each change is first recorded in an index (or indexed) to form a collection of 
changes.

This collection of changes is then validated (or committed) in your repository

Each commit is a new version or revision in your project history.

Okay… but what is an index ?



11

Before we start…

To use the latest version of git, load the command using module

$ module load git
$ git --version
git version 2.40.1



12

How to use git ?

In your console, type git
$ git
usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]
           [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
           [-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
           [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
           <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
   clone             Clone a repository into a new directory
   init              Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
   add               Add file contents to the index
   mv                Move or rename a file, a directory, or a symlink
   restore           Restore working tree files
   rm                Remove files from the working tree and from the index
   sparse-checkout   Initialize and modify the sparse-checkout

[…]

'git help -a' and 'git help -g' list available subcommands and some
concept guides. See 'git help <command>' or 'git help <concept>'
to read about a specific subcommand or concept.
See 'git help git' for an overview of the system.



13

How to use git ?

The git program allows you to run commands to manage your git repository

$ git <commande> <arguments>



14

First steps with git

Defining your identity
Your identity will be associated with the changes you make in your repositories
It is defined in the file ~/.gitconfig or %USERPROFILE%\.gitconfig

$ git config --global user.name "Your name"
$ git config --global user.email your@email
$ git config --global init.defaultBranch main



15

The burgers project

To illustrate this training, we will work on a burgers recipes 
project.

Create a burgers folder in your home folder

$ mkdir burgers



16

Créer votre dépôt

Go to your burgers folder and run the
git init comand

$ cd burgers
$ git init
Initialized empty Git repository in /Users/seilerj/burgers/.git
$ ls –a
. .. .git



17

git init <working dir>

creates a git repository

If the specified working dir does not exist, it will be created.

Without parameters, the command creates a git repository for the current 
folder.



18

Add a file to your repository

Let’s cook a burger
Create the file doublecheese.txt in the burgers folder and write down the list of 
ingredients to make a double cheese.



19

Add a file to your repository



20

Index a file in your git repository
Index the doublecheese.txt file in your repo with the
git add doublecheese.txt command

$ git add doublecheese.txt

Add a file to your repository



21

git add <file(s) or folder(s)>

adds one or more files/folders to the modification index 

Beware: the files/folders are just marked but their content is not yet saved in the 
repository



22

Save changes
Validate this modification in order to save it in your repository with the
git commit command

$ git commit –m "Birth of the double cheese"
[main (root-commit) bb0188d] Birth of the double cheese
 1 file changed, 7 insertions(+)
 create mode 100644 doublecheese.txt

Add a file to your repository



23

burgers

My git repo My project

R1

Add a file to your repository

New file

Git Index

addcommit



24

git commit -m “commentaire“

saves the changes contained in the index to your repository (by creating a new 
revision)

git commit -a saves all current modifications even if not indexed (but only 
for files already added to the repo)



25

Modify a file

There are no tomatoes in the double cheese!

Correct the file doublecheese.txt



26

A new burger

Add the file bigmac.txt to your burgers project

steak
salad
tomatoes
onions
pickle
ketchup
mustard



27

Check the status of your project

Where are we now?
Check what has changed in your project with the git status command

$ git status
On branch main
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git restore <file>..." to discard changes in working directory)
        modified:   doublecheese.txt

Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .ipynb_checkpoints/
        bigmac.txt

no changes added to commit (use "git add" and/or "git commit -a")



28

git status

allows you to list the current modifications (not saved in your repository) in your 
working folder. There are 4 possible states for each file:
▪ untracked (unknown)
▪ unmodified
▪ not staged (modified but not added to the index)
▪ to be commited (added to the index)



29

Files status in a Git repository

untracked unmodified
modified but not 

staged
staged

add file

file deletion

file modification

file indexing

validation of changes (commit)



30

Index changes

Index the change on the doublecheese.txt file with the git add command

$ git add doublecheese.txt



31

Check the status of your project

 Check what has changed in your project with the git status command

$ git status
On branch main
Changes to be committed:
  (use "git restore --staged <file>..." to unstage)
        modified:   doublecheese.txt

Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .ipynb_checkpoints/
        bigmac.txt



32

Add a new file to the repo

Add the new file bigmac.txt with the git add command

$ git add bigmac.txt



33

Check the status of your project

 Check what has changed in your project with the git status command

$ git status
On branch main
Changes to be committed:
  (use "git restore --staged <file>..." to unstage)
        new file:   bigmac.txt
        modified:   doublecheese.txt

Untracked files:
  (use "git add <file>..." to include in what will be committed)
        .ipynb_checkpoints/



34

Validate the changes

Run the git commit command

$ git commit -m "Add the big mac and correct the double cheese »
[main 299a6b2] Add the big mac and correct the double cheese
 2 files changed, 7 insertions(+), 1 deletion(-)
 create mode 100644 bigmac.txt



35

A new revision is here

burgers

My git repo My project

R1

R2

File modification
New file

Git Index

addcommit



36

Let’s introduce an error

Edit the bigmac.txt file to add a bad ingredient.



37

Retrieve the previous version of a file

Restore the last valid version of the file with the git checkout command

$ git checkout bigmac.txt



38

git checkout <file or folder>

allows you to restore a file or folder to its last version as saved in your repository.

It is possible to specify a revision number to restore the file or folder to a 
previous version.



39

The revisions

Did you say revision number?
Each commit to your repository creates a new revision or version of your project.

Each revision is actually a set of changes.



40

View the revisions of your repository

Use the git log command to view the revisions of your local repository

$ git log
commit 299a6b210eed54e9f4c164b85ecbcb9ed899e6eb (HEAD -> main)
Author: Julien SEILER <seilerj@igbmc.fr>
Date:   Tue May 16 12:14:35 2023 +0200

    Add the big mac and correct the double cheese

commit bb0188df5bf0c3cb3a152e52e22df1249d52e2be
Author: Julien SEILER <seilerj@igbmc.fr>
Date:   Tue May 16 11:49:37 2023 +0200

    Birth of the double cheese



41

git log

allows you to view all the revisions stored in your local repository
For each revision, the following information is available:

▪ commit : revision number

▪ Author : user who registered the revision

▪ Date : date of the creation of the revision

▪ Comment written by the user during the commit



42

Return to a previous revision of your project

Revert to the initial version of your project (just the doublecheese.txt) using the

git checkout <id rev> command

$ git checkout bb0188df5bf0c3cb3a152e52e22df1249d52e2be
Note: switching to 'bb0188df5bf0c3cb3a152e52e22df1249d52e2be'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
[…]
$ ls
doublecheese.txt



43

Introduction to the concept of branch

main

Add the big mac and correct the double cheese
299a6b210eed54e9f4c164b85ecbcb9ed899e6eb

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

Main branch

HEAD



44

Introduction to the concept of branch

main

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

git checkout bb01...

DETACHED HEAD



45

Introduction to the concept of branch

main

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

dev

We can start a new branch



46

Introduction à la notion de branche

main

Birth of the double cheese
bb0188df5bf0c3cb3a152e52e22df1249d52e2be

We can go back to the last version
git checkout main



47

Go back to the last version of the project

Use the command git checkout main

$ git checkout main
Previous HEAD position was bb0188d Birth of the double cheese
Switched to branch 'main'
$ ls
bigmac.txt doublecheese.txt



48

Going further with the branches



49

Going further with the branches

main
r1

big changes

r2 r3 r5

r4 r6 r7

r8

Default branch



50

Going further with the branches

Our fast-food restaurant wants to go ORGANIC.
We need to change all our recipes!!!

That’s a « big change »…



51

Create a new branch

Create a new organic branch on your repository

$ git branch organic



52

Create a new branch

Consult the branches available on your repository

$ git branch
* main
  organic



53

git branch

manage the branches of your repository



54

Change branch

Use the git checkout command to switch branches.

$ git checkout organic
Switched to branch 'organic'



55

Going further with the branches

main
r1

organic

r2 r3



56

We go organic!

Modify the Big Mac recipe and commit the change

$ git commit –a –m "organic mac"
[organic a7a6f6e] organic mac
 1 file changed, 7 insertions(+), 7 deletions(-)

organic steak
organic salad
organic tomateos
organic onions
organic pickles
organic ketchup
organic mustard



57

Going further with the branches

main
r1

organic

r2 r3

r4

Organic Mac



58

We go organic!

Modify the Double Cheese recipe and commit the change

$ git commit –a –m  "organic cheese"
[organic 1ed7510] organic cheese
 1 file changed, 6 insertions(+), 6 deletions(-)

organic steak
organic cheese
organic onions
organic pickles
organic ketchup
organic mustard



59

Going further with the branches

main
r1

organic

r2 r3

r4

Organic Mac

r5

Organic Cheese



60

Let's go back to our main branch

Return to the main branch with the 

git checkout command

$ git checkout main
Switched to branch 'main'



61

Merge of branches

We can retrieve the changes saved on the organic branch with the 
git merge command

$ git merge organic
Updating 299a6b2..1ed7510
Fast-forward
 bigmac.txt       | 14 +++++++-------
 doublecheese.txt | 12 ++++++------
 2 files changed, 13 insertions(+), 13 deletions(-)



62

The git cycle

Working directory

git repository

.git

commitcheckout
merge



63

git command Description

init Creating a repository for a project/folder

add Indexing of a modification or addition of a file or folder

rm Deleting a file or folder

mv Moving a file or folder

status Visualization of the repository status

diff Viewing changes between two revisions or between a revision and the current version

checkout Retrieving a file from the repository

log Consultation of the list of revisions (commits) registered on the repository

The git commands to manage your local repository



64

Exercice

1. Delete the bigmac and save the change in your repository

2. Add a burger and save the change to your repository

3. Restore the bigmac to your working folder



65

Exercice

1. Delete the bigmac and save the change in your repository

$ git rm bigmac.txt
$ git commit –m “bye bye big mac“
[main 916c075] bye bye big mac
 1 file changed, 7 deletions(-)
 delete mode 100644 bigmac.txt



66

Exercice

2.   Add a burger and save the change to your repository

$ git add newburger.txt
$ git commit -m "add a new burger"
[main 26f9033] add a new burger
 1 file changed, 1 insertion(+)
 create mode 100644 newburger.txt “



67

Exercice

3. Restore the bigmac to your working folder

$ git checkout <rev> bigmac.txt`
Updated 1 path from 69a5a31
$ git commit -a -m "return of the big mac"
[main 9a4a1c6] return of the big mac
 1 file changed, 7 insertions(+)
 create mode 100644 bigmac.txt

<rev> is the last revision at which the bigmac.txt was present



68

Next step ? Share you work ! 


