
Using Docker and
Apptainer

J. Seiler

Based on Céline Hernandez training for FAIR Bioinfo 2023

2

Let’s do an exercise first

3

Exercise : putting our pipeline project on Github

▪ Create a Git repository for your pipeline folder
▪ Index and commit the following files

▪ All Jupyter Notebooks
▪ All R files
▪ environment.yml
▪ environment-linux-64.lock

▪ Push on Github in a new public repository

4

Exercise : putting our pipeline project on Github

▪ Create a Git repository for your pipeline folder

$ cd pipeline
$ git init

5

Exercise : putting our pipeline project on Github

▪ Index and commit the following files
▪ All Jupyter Notebooks
▪ All R files
▪ environment.yml
▪ environment-linux-64.lock

$ git add *.ipynb *.R environment.yml environment-linux-64.lock
$ git commit -m "Initial commit"

6

Exercise : putting our pipeline project on Github

▪ Push on Github in a new public repository

$ git remote add origin <repo ssh url>
$ git push origin main

7

About encapsulation

8

Different levels of encapsulation

9

Encapsulation

10

Encapsulation

11

Encapsulation

12

Encapsulation

13

Encapsulation

14

Encapsulation : managing environments

15

Encapsulation : managing environments

16

Encapsulation : hardware virtualization

17

Encapsulation : hardware virtualization

18

Encapsulation : hardware virtualization

19

Encapsulation : hardware virtualization

20

Encapsulation : OS virtualization

21

Encapsulation : OS virtualization

22

Encapsulation : OS virtualization

23

Encapsulation : OS virtualization

24

Docker policy

25

Docker policy: DockerHub usage

26

Encapsulation

27

Encapsulation and reproducibility stack

28

About Docker

29

About Docker

30

What is Docker?

31

What is Docker?

32

What is Docker?

33

Encapsulating our
pipeline tools into
Docker

34

Sharing our work…

What we have now ?

- A Git repository with our Notebook
- A environment lock file to recreate quickly a conda environment and get all

dependencies

But

- Notebooks require a JupyterLab server…

35

Binder

What if we could shared a runnable JupyterLab environment including our Notebook
and all its dependencies ?

Introducing…

https://mybinder.org

36

Binder

Binder is an online service that lets you share your notebook(s) in a interactive
environment.

How does it work ?

BinderHub (the backend of Binder) do the following operation:

▪ Fetch your repo from GitHub
▪ Analyse the contents
▪ Build a Docker image based on your repo
▪ Launch that Docker image in the cloud
▪ Connect you to it via your browser

37

Binder

Get the HTTPS url of your repository on Github

38

Binder

Go to https://mybinder.org

https://mybinder.org

39

Binder

Paste your Github repository URL and click Launch

40

Binder

The build process is running…
Binder is picking up our environment.yml file automatically !

41

Docker image

What if I don’t have a Notebook. Can I still share my work as a Docker image ?

Introducing… Github Container Registry

42

Docker image

Let’s create a shell version of our Notebook

$ jupyter nbconvert my_first_notebook.ipynb --to script
[NbConvertApp] Converting notebook my_first_notebook.ipynb to script
[NbConvertApp] Writing 990 bytes to my_first_notebook.sh

43

Docker image

We need to customize our script to make it more portable

Add the bash shebang at the beginning of the my_first_notebook.sh script :

#!/usr/bin/env bash

Set a variable to retrieve the directory containing the script (we need this to call the R
script)

SCRIPT_DIR=$(cd -- "$(dirname -- "${BASH_SOURCE[0]}")" &> /dev/null && pwd)

Use the variable in the R script call

R < $SCRIPT_DIR/Deseq2.r --no-save

44

Docker image

Add the new shell script to your repository

$ git add my_first_notebook.sh
$ git commit -m "add bash version of the pipeline"

45

Docker image

Github can help us create automatically a Docker image based on a Dockerfile located
in our repository.

The step to do this are :

▪ Create a Dockerfile and push it Github
▪ Enable the Publish Docker Container Github action

46

Docker image

Create a new docker folder in your pipeline folder

$ mkdir docker

47

Docker image

Create a new file named Dockerfile in the docker folder
FROM mambaorg/micromamba:1.5.6
ADD ../environment.yml .
RUN micromamba install -y -n base -f environment.yml && \

micromamba clean --all --yes

USER root
RUN mkdir /opt/pipeline
ENV PATH="/opt/pipeline:$PATH"
ADD ../my_first_notebook.sh /opt/pipeline/
ADD ../Deseq2.r /opt/pipeline
RUN chmod +x /opt/pipeline/my_first_notebook.sh

USER $MAMBA_USER

Create an image based on micromamba distribution
Add the environment.yml file
Install packages listed in the environment.yml in the base environment
and cleanup everything to make the image as light as possible

Switch to root user
Create a /opt/pipeline folder
Add the /opt/pipeline folder to the image $PATH
Add the pipeline script to the /opt/pipeline folder
Also add the Deseq2.r file
Make sure the script is executable

Switch back to mamba user

Add the docker folder to the repository

$ git add docker
$ git commit -m "add support for docker"

48

Docker image

Push the last commits to Github

$ git push origin main

49

Docker image

Github let you define actions that will be triggered automatically when your repository
changes.

Actions are configure through YAML files called workflow.

Github proposes a set of pre-defined actions ready to use.

The Publish Docker Container action is a workflow that will build a Docker image
based on a Dockerfile found at the root of your repository. It will then publish it in the
Docker registry provided by Github.

50

Docker image

Go to your repository on Github and move to the Actions tab
You should see the Publish Docker Container action suggested
Click its Configure button

51

Docker image

Github gives us a publish-docker.yml workflow ready to be pushed on our repository.

We need to make two changes in this file :

First, the image signing tool proposed by Github is outdated (this is a bug).
We need to upgrade it :

 # Install the cosign tool except on PR
 # https://github.com/sigstore/cosign-installer
 - name: Install cosign
 if: github.event_name != 'pull_request'
 # uses: sigstore/cosign-installer@6e04d228eb30da1757ee4e1dd75a0ec73a653e06 #v3.1.1
 uses: sigstore/cosign-installer@e1523de7571e31dbe865fd2e80c5c7c23ae71eb4 #v3.4.0
 with:
 # cosign-release: 'v2.1.1'
 cosign-release: 'v2.2.3'

52

Docker image

By default, the workflow is looking for a Dockerfile at the root of the repository.
However we have created our Dockerfile in a docker folder.

We fix the job to use the docker/Dockerfile :
 - name: Build and push Docker image
 id: build-and-push
 uses: docker/build-push-action@0565240e2d4ab88bba5387d719585280857ece09 # v5.0.0
 with:
 context: .
 file: ./docker/Dockerfile
 push: ${{ github.event_name != 'pull_request' }}
 tags: ${{ steps.meta.outputs.tags }}
 labels: ${{ steps.meta.outputs.labels }}
 cache-from: type=gha
 cache-to: type=gha,mode=max

53

Docker image

Click the green Commit changes… button and validate the commit in the modal
window.

54

Docker image

Github will automatically trigger the new action workflow.
You can find it back in the Actions tab.

55

Docker image

When the build is finished successfully, the Docker image can be found in Packages
section of the repository.

56

Docker image

Click on the main branch link to get the image URL

don’t use this

57

Docker image

Click on the main branch link to get the image URL

You can now run the pipeline on any
Docker enabled computer :

docker run -t -i \
ghcr.io/julozi/fairbioinfo2024:main \
my_first_notebook.sh

Use the --platform linux/amd64 option
if you are working on Apple Silicon

http://ghcr.io/julozi/fairbioinfo2024:main

58

Apptainer :
container on HPC cluster

59

Apptainer : container on HPC cluster

Docker requires a Docker Host to run
containers.

The Docker Host is a system daemon that
run as root and can access to a reserved
part of the hardware resources.

This is not compatible with an HPC
cluster where hardware resources are
already managed by a job scheduler
(SLURM)

60

Apptainer : container on HPC cluster

Apptainer is an open source container platform designed to run complex applications
on high-performance computing (HPC) clusters in a simple, portable, and reproducible
way.

An Apptainer container image is a file
An Apptainer running container is a user process

61

Apptainer : container on HPC cluster

Apptainer has its own image definition format which is different than Dockerfile.

However, it is possible to build an Apptainer image directly from a Docker image URL.

Let’s create an Apptainer image file from our pipeline Docker image :

$ mkdir apptainer
$ cd apptainer
$ apptainer build pipeline.sif docker://<your docker image URL>

This will create a pipeline.sif file ready to be used.

You can now run the pipeline script contained in the image :

$ apptainer run pipeline.sif my_first_notebook.sh

