Section outline



  • HoursTitle Main instructor/presenter Support
     Day 1
       
    14:00 - 14:10 Welcome Olivier Sand Slides
    14:10 - 14:20 Icebreaking activity Bérénice Batut
     Cards
    14:20 - 14:50 Participant presentations  Slides
    14:50 - 18:50  Intro to Machine Learning (foundational aspects)
     Wandrille DucheminTutorial
    14:50 - 15:50 General sklearn syntax intro + 
     
    15:50 - 16:10  Coffee break 
    16:10 - 16:55  Overfit/underfit, the need for regularization,
     cross validation and a test set
      
    16:55 - 17:40 Hands-on: overfit/underfit, the need for regularization,
     cross validation and a test set
     
    17:40 - 17:50 Short break 
    17:50 - 18:20  Metrics and imbalance  
    18:20 - 18:50  Hands-on: Metrics and imbalance  
    19:30 Dinner  
     Day 2
    09:00 - 09:15 Recap from day 1 Wandrille Duchemin 
    09:15 - 09:30  ELIXIR Fotis Psomopoulos 
    09:30 - 12:30 Intro to Neural networks Ralf Gabriels & Hari Ramadasan Slides
    09:30 - 10:30A practical intro to neural networks with PyTorch  GitHubGCollab
    10:30 - 11:00 Coffee break  
    11:00 - 12:30 A practical intro to neural networks with PyTorch  GCollab
    12:30 - 14:00 Lunch  
    14:00 - 17:30 Intro to Neural Networks (continued)  Slides
    14:00 - 16:00 Convolutional neural networks  GitHubGCollab
    16:00 - 16:30 Coffee break   
    16:30 - 17:30 Recurrent neural networks & attention mechanisms  GitHubGCollab
    19h30 Dinner  
     Day 3   
    09:00 - 09:15 Recap from day 2 Ralf Gabriels & Hari Ramadasan 
    09:15 - 12:30 Intro to GAI and LLM Raphaël  Mourad
     Slides
    09:15 - 10:30 Introduction to LLM  
    10:30 - 11:00 Coffee break  
    11:00 - 11:45  Pretraining LLM for DNA - hands on Tutorial
    11:45 - 12:30 Hands-on: Finetuning LLM,
     zeroshot prediction for DNA variants, 
     synthetic DNA sequence generation
     Tutorial
    Tutorial
    Tutorial
    12:30 - 14:00 Lunch  
    14:00 - 17:30 Regulations/standards for AI - DOME Fotis Psomopoulos Tutorial
    14:00 - 14:30 Introduction to common challenges
     in current AI/ML applications
      
    14:30 - 15:00 Hands-on: group activity;
     review selected articles
     and assess the (potential) issues - if any
      
    15:00 - 15:15 Introduction to the DOME
     recommendations
      
    15:15 - 16:00 Hands-on:
     annotation of the previously selected articles 
     - assessment of the FAIR aspects - part 1
      DOME
    16:00 - 16:30 Coffee break  
    16:30 - 17:00 Hands-on:
     annotation of the previously selected articles
     - assessment of the FAIR aspects - part 2
      
    17:00 - 17:30 Review of the key points of the AI Act
     and the GenAI guidelines
      
    18:45 Savoyard Apéritif  
    19:30 Savoyard Dinner  
     Day 4   
    09:30 - 12:30 General recap / Supplementary exercises All 
    09:30 - 10:20  Revision/extra material  
    10:20 - 10:50 Coffee break  
    10:50 - 12:10 Revision/extra material
      
    12:10 - 12:30 Short presentation datasets  
    12h30 - 14:00 Lunch  
    14:00 - 17:00 Bring Your Own Question/Data/Model All 
    14:00 - 16:00 Group work on chosen datasets  
    16:00 - 16:30 Coffee break  
    16:30 - 18:30 Walk  
    19:30 Dinner  
     Day 5   
    09:00 - 10:30 Group work  
    10:30 - 11:00 Coffee break  
    11:00 - 12:00 Group presentations  
    12:00 Lunch